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It is shown that the second moment of a dipolar solid can be written as a sum of
products of real second-order spherical harmonic functions. This sum can be
contracted to a quadratic form, {Sq, where q depends only on the direction of the
magnetic field and §, the second moment tensor, only on the crystal structure and
the assumptions made concerning the molecular motions. The effects on S of
symmetry, rigid-body reorientations, and librational motion are investigated
quantitatively. A formula for the second moment of a powder is also given. The
procedure is illustrated by refinements of the relative hydrogen positions in oxalic
acid dihydrate from experimental second moments.

GENERAL INTRODUCTION

[n 1953 Andrew and Eades (/) concluded from NMR data that the molecules in
solid benzene reorient around their sixfold pseudosymmetry axes. Since then, numerous
investigations using continuous-wave and pulse NMR have determined different types
of motion in solids: free and hindered rotation, conformational motion (2), collective
reorientational processes (3), diffusional motion, and lattice vibrations. The NMR
technique is well suited for such studies which provide valuable information about the
dynamic properties of solids.

It is the purpose of this and the subsequent (4) paper to illustrate, using second
moment tensors, that second moments from a wide-line study are actually closely
related to the relaxation constants obtained from measurements of T, and T,. It is
also the author’s purpose to demonstrate that second moment tensors may readily be
calculates theoretically from the known crystal structure and from assumptions about
the reorientational and vibrational motions taking place. A summary of some of the
results obtained is given in (5).

In Part I expressions are derived for the second moment tensor in the presence of
reorientational motion including rigid-body reorientations. Symmetry constraints are
investigated and an expression is derived for the second moment of a powder. The
procedure is illustrated by calculations on oxalic acid dihydrate. The topic ‘“Vibrational
Motion” requires a special introduction and is therefore treated separately in Part I.

I. THE SECOND MOMENT TENSOR
Introduction
The lineshape of an NMR spectrum of a dipolar solid is, in general, difficult to
calculate theoretically (6); the Van Vleck formula (7-10) for the second moment is
therefore usually used. The direct application of this formula has, however, several
Copyright © 1976 by Academic Press, Inc. 411
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disadvantages: The tedious calculations must be carried out for each of the orientations
of a single crystal and for a number of evenly distributed orientations sufficiently large
to enable an estimate to be made of the average over a powder. (The latter procedure
is necessary only when molecular motions occur.) Furthermore, it is not clear from
the formula how the situation is affected by symmetry, how many independent para-
meters one may determine from a set of experimental data, or how averaging over
lattice vibrations may be carried out. In 1959 McCall and Hamming (/7, 12) proposed
a method which allowed the separate evaluation of the orientational and structural
dependencies of the second moment in rigid solids, and found that, in general, fifteen
quantities are sufficient to describe the structural dependence of the second moment.
This method was never used by the authors themselves, but has been applied by others
(13-15), as described in a review article by Gorskaya and Fedin (/6). O’Reilly and
Tsang published a more comprehensive study using more suitable functions for the
structural dependence of the second moment, namely, the even complex spherical
harmonics up to and including fourth order (17). Making extensive use of group theory,
they derived somewhat cumbersome expressions for the symmetry-adapted functions
and tabulated the number of independent structural parameters for the different crystal
symmetries. Dereppe (I8) recently extended the procedure to include molecular
motion, and also derived a convenient formula for the average over a powder. In 1969,
Falaleev, Falaleeva, and Lundin (/9) introduced a tensor approach which was later
supplemented by symmetry considerations (20). Their method is more convenient than
the others referred to but does not include cases involving molecular reorientations.
This seriously limits the applicability since relaxation times for rigid solids are usually
very long.

Mathematical Derivations
The second moment tensor. The second moment, M,, of an NMR line broadened by
dipolar interactions may be calculated according to the well-known Van Vleck formula
(7-9)
M,=M; + M,,,

where
N ®
My =3%-(1/N) 3 jE VAR LU+ 1) Kb,
i=1 :l [1]
M= 4N 3 3 2202 R Ll + Db,
and

bij = (3 COSZ 6” - 1)/"”3.

The quantities M,, and M, are the contributions from interactions between spins of
the same and of different kinds, respectively, r,; is the distance between atoms 7 and j
and 0, is the angle between the external magnetic field and the vector connecting two
atoms. The quantity N is the number of atoms at resonance per unit cell, and y and 7
are the gyromagnetic ratio and spin for a nucleus.

Two averaging symbols are included in formula [1]. The inner average of b;; is
taken over all motions characterized by a correlation time sufficiently short to cause
the maximum possible reduction of the second moment. The outer average takes
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account of static disorder, or of molecular motion which is too slow to affect the second
moment.

To simplify what follows, the indices / and j will be dropped, and the summation
over i and j will be included in the outer average. Only spins at resonance will be treated
since the extension required to include the term M, is trivial. We can now write

M, =al<b)?), 2]

where o is the proper constant as apparent from formula [1].

It is convenient to express the second moment tensor, to be introduced shortly, as
a function of atom coordinates in an orthonormal system. It is convenient to specify
the relations between the basis vectors in the orthonormal system i, j, and k and the
crystallographic axes a, b, and ¢ since the components of a tensor depend on the basis.
The symmetry considerations later in this paper become particularly simple for the
following choice: The vector i is parallel to a, j is perpendicular to a and lies in the
plane defined byaandband k=i x j.

Formula [1] can now be rewritten in terms of the interatomic vector ¥ = (ry,r,,r3)
and the unit vector h= (h,,h,,A;) which is parallel to the external magnetic field.

_3(hr)*—r? 3h(f)h—r?

b- PE PE
e \
n"——= nr ryrs
3 h
3 r2 1
- . 2 .
'—;'g(hnhz,hs) rr; Fa 3 Fars h, [3]
2 hy
, T
rirs rars rs ey

=(1/r)h3R —ITrR)h,  where R =Trf.

Herz I is the identity matrix. This expression may be expanded in the matrices B,
shown in Table 1.

~ -~ 3
b=(1/r)RGR—ITtR)h=h > a,B.h
k=1

s 5 (4]
= Z ak(thh) = Z ayqy,
k=1 k=1

TABLE 1
THE MATRICES B*

1 0 O 0 01
1/2 1/2
B, = (5)2 (O 1 0) B, = a 5:; (0 0 0)
0 0 -2 1 00
1 0 0 000
1/2 1/2
Bz = a 5) (0 -1 0) Bs= (152) (0 0 ])
0 0 O 010
0 1 O 1 00
1/2
By= (152) (1 0 0) Be= (0 1 0)
0O 0 O 0 01
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where
a = @n'?/5r3) ¢(r) and g =212 y(h). [5]

The functions ¢, are the second-order spherical harmonic functions shown in Table 2.
There is no contribution ag¢qe since (3R — ITrR) has zero trace.

TABLE 2

THE REAL SECOND-ORDER SPHERI-
cAL HARMONICS ILLUSTRATED AS
FUNCTIONS OF THE VECTOR

p=(x,y, 2"

¢1=1(5/16m)*2 [(x* + y* — 22%)[p?]
é2 = (15/16m)' 2 [(x* — ¥y®)[p?]
= (15/47)'2 (xy/p?)
do = (15/4m)'? (xz/p?)
és = (15/4m)'? (yz[p®)

%The definition of the basis
vectors is given in the text.

Using [4] we may now rewrite [2].

M, =al(b)?*) = oz<<§ a; ‘Ii>2>
(g n])
az< é didjq,qj> (6]

5
2
i=1
5
Z {ad,d;>9:9;
5
Z

5
2
i=1
5
Z Sququ "'qsq

This is a quadratic form in q and the symmetric tensor S, where S may be called the
second moment tensor.

Reorientational rigid-body motion. Let us assume that the reorientations of a rigid
body take place at a rate much faster than that corresponding to the linewidth, that
there are n equally probable configurations, and that each such configuration i is
described by a real and unitary transformation U;. Such a transformation contains
only the rotational part (centered at the origin) of the actual reorientation, since the
intra-rigid-body second moment is not affected by translations. The matrices B, shown
in Table 1 and the U, may be used in the definition of T:

n - 5
(Un) 3 UB U, = S TenB., k=1,...,5. [7]
i=1 m=1

The coefficient for the term B is zero since the trace is invariant under a unitary
transformation.
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The vector U,r is inserted into [3], [4], and [5] and the proper average is taken over
the motion:

_I by -2 11: 02
b—ZZ————————— ~h > UGR-ITrR)Uh

¢ r’ nre 5y
i=1
~ B 5 .
=(1/mh 21 kZ a,U; B, U;h (8]
_ 5 5 5 5
::h Z a z TkmB h=k21 k Zl Tkmqm'

Using the relation
G = ,éx TimGms
we can now insert the result from [8] into [6] and obtain
M, = Sq = §TSTq; 9]

thus, $? = TST. The quantity S is the second moment tensor for the rigid body at rest,
and S is the second moment tensor for the body when it is reorienting. Equation [9]
holds also in cases where S is already narrowed by internal motions.

For example, a rigid body reorients around the k axis in such a way that the U,
transformations correspond to rotations by 0, 90, 180, and 270 degrees. If the U,
are inserted into [7], one obtains T;, =1, and 7;; = 0 for all other values of i and j.
The term T may now be inserted in [9], which gives Sy, = Sy, and S;;” = 0 otherwise.
Thus, the reduced second moment is Sy,4,°.

The second moment for a powder. An expression for the average of the second moment
over the orientations of the crystallites in a powder can readily be derived if we write
[6] in terms of the orthogonal and normalized spherical harmonic functions shown
in Table 2:

M=Sa=3 3 S,q0,=4n 5 5 5,00 4,0)

i=1 j=1

LMM

i J

The average is

) 2 Sy | o

i=1j=1 sphere
—Trs. [10]
( dt

spfxere

M, =

Results

The second moment tensor. The second moment, M,, of an NMR line broadened by
dipolar interactions may be calculated according to the well-known Van Vleck formula
(7-10). This formula was rewritten in the preceding section in the form

M, =§Sq. [11]

The right-hand side of the formula is a quadratic form in q and S where q depends
only on the direction of the external magnetic field relative to the crystal (cf. Table 2),
and S, which may be called the second moment tensor, depends only on the crystal
structure and the motions present. Since S is a symmetric 5 x 5 tensor there are at
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most 15 elements to be determined, which also means that at most 15 structural para-
meters may be determined from comparisons between experimental and calculated
second moment tensors. This is consistent with earlier results (cf. Introduction).

Reorientational rigid-body motion. In many cases encountered in practice a molecule
or a segment of a molecule reorients as a rigid body. It was shown in the preceding
section that the intra-rigid-body second moment tensor averaged over the reorienta-
tional motion, $, is given by the formula

S™ = TST. [12]

Here S is the second moment tensor for the rigid body at rest and T depends only on
the reorientations. Equation [12] holds also in cases where S is already reduced by
any internal motions.

The second moment of a powder. The second moment averaged over the crystallites
in a powder is simply the trace (the sum of the diagonal elements) of the second moment
tensor (cf. preceding section).

Symmetry considerations. If symmetry is present, it is possible to find a transforma-
tion of the functions ¢,4; such that each new function transforms according to one of
the symmetry species of the group (21). Since the second moment is totally symmetric
with respect to all symmetry operations, all the coefficients of functions which do not
belong to the totally symmetric species must vanish. This means that the coefficients
of the untransformed functions are related to each other in such a way that the total
symmetry is preserved.

The symmetry of a periodic solid may be described by one of the 230 space groups
(22). The NMR spectrum is, however, independent of the translation symmetry, and
this restricts our considerations to the corresponding 32 point groups. In addition, the
Hamiltonian for the dipole-dipole interaction has inversion symmetry and thus also
has the second moment. We need therefore only consider the point group of highest
symmetry for each of the 11 Laue groups. Such an analysis has been made using group
theory and the result is shown in Table 3. The number of independent parameters
which completely describe the second moment for different symmetries agrees with
those in (5, 17, 20).

It is important that the symmetry elements considered so far are those of the crystal
structure or have been derived from it. If, instead, the symmetry of the second moment
itself were to be investigated, one might find that it was higher. Thus, a tetragonal
crystal structure whose Laue symmetry is 4/m has a second moment tensor whose
Laue symmetry is 4/mmm. The trigonal point groups 3 and 3m are similarly related.
These relations together with the results listed in Table 3 imply that it is only possible to
determine the crystal class of a substance if only its experimental second moment tensor
is known. This conclusion has been drawn earlier (cf. Refs. 5, 20).

Refinement of the relative hydrogen positions in oxalic acid dihydrate using second
moment tensors. The crystal structures of normal and deuterated oxalic acid dihydrate
have been determined in several diffraction studies (23-29). The structure of the normal
compound, which is only known to crystallize in the a-phase, was obtained from
neutron diffraction by Garrett (25) and is illustrated in Fig. 1. In addition, the relative
positions of the hydrogens have been determined from NMR data by several authors
(14, 30-32). Dereppe et al. (I14) applied the procedure proposed by McCall and
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Hamming (11, 12) using 350 experimentally obtained second moments of a single
crystal. Hiland and Pedersen (32) compared experimental and calculated lineshapes
and obtained results in good agreement with those from the neutron diffraction study
(25). They also critically discussed the results of Dereppe et al., making the criticism

TABLE 3

THE PoSSIBLE SYMMETRIES OF THE SECOND MOMENT AND THEIR RESTRICTIONS ON THE ELEMENTS OF THE
SECOND MOMENT TENSOR

No. of

independent  The nonzero elements of S (S,;=.S5,;) and
Crystal class Laue symmetry parameters their symmetry relations
Triclinic 7 $(C) 15 all 15
Monoclinic® 2{m Can 9 S11512514.822.524 533535844 855
Orthorombic mmm Dz),( Vh) 6 S1 1 S] 2 Szz S_;s S44 S55
Tetragonal 4/m Cu, 5 Su Szz Szg S33S44= S55
Tetragonal 4/mmm Du, 4 S” Szz S_;3 S44 - S55
Trigonal® 3 S6(Cs1) 5 S11822 = 833844 = 855524 = =835 534 = S2s
Trigonal® 3m D4 4 811822 = 833814 = 855534 = S5
HE‘XagOnal 6/mmm Dﬁh 3 Sl 1 Szz = S33 S44 = S55
Cubic m3m Td 2 S“ = Szz S33 = S44 = S55

“ The symmetry axis is b.
* The symmetry axis is ¢ in the corresponding hexagonal cell given in Ref. (22).

FiG. 1. The crystal structure of oxalic acid dihydrate as given in Ref, (25).

that they had not taken the flippings of the water molecules into account. The purpose
of this section is twofold: to illustrate the use of the second moment tensor and to
redetermine the relative hydrogen positions from the data of Dereppe et al. according
to a more realistic model for the molecular motion.

The experimental second moment tensor given in Table 4 was determined in a least-
squares procedure using the data in (/4). Two orientation angles, around the ¢* and
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a axes, could also be included in the refinement since the symmetry is monoclinic.
The total shifts in these angles were only about one degree in both cases, however,
which thus partly confirms the orientation given in (/4). The quantity minimized was
the root mean square value of (M,(obs) — M,(calc))/M,(calc) and its final value
became 0.049. The computer program (ESM) used for these calculations is described
in (33).

The theoretical second moment tensors for the interactions from within an asym-
metric unit (the two water hydrogens and the acid hydrogen) and between this unit
and its 33 nearest neighboring asymmetric units were calculated from the structural
data in (25). The water molecules are known to reorient around their twofold pseudo-
symmetry axes (32). This motion was taken into account in the calculations which were

TABLE 4

EXPERIMENTAL AND CALCULATED SECOND MOMENT TENSORS IN G? FOR OXALIC AcID DIHYDRATE®

St 2812 2814 S22 2824 Sa3 2835 Saa Sss

Experimental 2053 ~-0.396 5130 1.460 0.087 6.254 7.116 5.612 3.141

Theoretical intraunit  4.724 1.866 8.746 0.854 1790 11.437 8406 4.050 1.689
Theoretical interunit 0.781 —0.125 0.225 0.665 0.059 0.841 0342 0448 0491

Intraunit tensors in
refinements of the

structure?
observed 1.272  —0.271 4905 0.795 0.028 5413 6774 5.164 2.650
calculated 1.237 —0.256 5.043 0.637 0.043 5479 6.662 5227 2422

@ S, =Sy; the elements not listed are zero.
b See text.

performed as described earlier (34, 35) using the general program PSM (33, 35), which
is based on the procedure described above. The result is shown in Table 4.

It was assumed that the detailed geometry has little effect on the theoretical inter-
asymmetric unit second moment. The difference between the experimental and the
theoretical interasymmetric unit second moment tensors was therefore used in the
subsequent least-squares refinements of the relative hydrogen positions in the asym-
metric unit. The interatomic distances and angles between the interatomic vectors and
the crystallographic axes are shown in Table 5, together with the results from earlier
studies. The intra-asymmetric unit tensor calculated fromthe final positional parameters
is given in Table 4.

The agreement obtained in this study between the interatomic vectors and those
obtained by diffraction methods or lineshape analysis is reasonable in view of the
systematic errors involved in a second moment study. It is, for instance, well known
that the second moment is very sensitive to the shape of the wings of the wide-line
spectrum, and that part of these often have to be excluded because of signal-to-noise
difficulties. Furthermore, it is well known that the vibrational motion of a water
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TABLE 5

STRUCTURAL DATA FOR THE HYDROGEN ATOMS IN OXALIC ACID DIHYDRATE LABELED IN FIGURE 1,
CompPARED WITH RESULTS FROM EARLIER STUDIES®

i J riy X1 X2 X3
Garrett (25) (neutron diffraction) 1 2 1.524 40.7 53.8 86.8
1 3 2.108 477 82.3 27.5
2 3 2.068 82.7 72.5 19.7
Itoh et al. (30, 31)* (NMR lineshape) 1 2 1.65 40.2 57.6 82.5
1 3 2.31 43.1 90.0 41.6
2 3 1.96 77.2 67.6 35
Dereppe et al. (14) (NMR second moment) 1 2 1.563 45.2 52.0 81.9
1 3 2.071 47.6 83.3 27.3
2 3 2.203 82.3 71.0 20.7
Hiland and Pedersen (32) (NMR lineshape) 1 2 1.595 389 55.5 87.5
1 3 2.131 46.6 81.4 29.1
2 3 2.046 83.7 73.5 19.4
This study (NMR second moment) 1 2 1.66 454 55.5 77.4
1 3 2.03 37.2 87.3 36.7
2 3 2.16 77.9 67.1 23.1

¢ The interatomic distances, r;;, between atoms / and j are shown together with the angles x,, x,,
and y; between the interatomic vectors and the crystallographic axes a, b, and ¢, respectively.
* An incorrect model has been used in this study as discussed in Ref. (32).

molecule causes an increase of the apparent intramolecular NMR distance (36), while
it decreases the distance observed by diffraction techniques (36, 37).

Discussion

One advantage of using procedures in which the structural and orientational depen-
dencies of the second moment are separated is that the summations in Van Vleck’s
formula only have to be performed once. However, additional features are often
desired. Real functions are much easier to use than complex ones for computer cal-
culations. The use of symmetry-adapted functions not only allows the determination
of a minimal number of parameters, but also in many cases the orientation of the
crystal. It is important that molecular motion is considered since the relaxation times
can be forbiddingly long in rigid solids. Furthermore, it is often desirable to be able
to calculate the average over a powder conveniently, since it is a tedious and sometimes
almost impossible task to grow large single crystals. Finally, it is well known, particu-
larly for weakly bonded molecules with small moments of inertia, that the librational
motions cause a nonnegligible decrease of the second moment (cf. Part II). The applic-
ability of the present procedure is compared in Table 6 with those of the procedures
described in the Introduction. The method has been used in experimental studies of
molecular motion in dimethylammonium (38) and trimethylammonium salts (38, 39).
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TABLE 6

A COMPARISON OF THE APPLICABILITY OF THE DIFFERENT PROCEDURES FOR CALCULATIONS OF SECOND
MOMENTS?*

McCalland  O’Reilly and Falaleev ef al. Dereppe Present

Hamming (11, 12) Tsang (I7) (19, 20) 18) study
Real functions yes no yes no yes
Symmetry no yes yes no yes
Molecular motion no no no yes yes
Dynamical average for a powder no no no yes yes
Librational motion (cf. Part IT) no no no no yes
Relaxation constants (cf. Ref. (4)) no no no no yes
7 See text.
II. VIBRATIONAL MOTION

Introduction

A general description of the vibrational motion in a solid is very complicated (40, 41),
usually involving several approximations. Such approximations include harmonic
motion and “low temperature” (most oscillators are in their ground states). The
problem is still rather complex, however, and one often makes the additional assump-
tion that the vibrational motions of the atoms are completely uncorrelated. For such
motions the mean square amplitude of vibration along a direction p is equal to pTp,
where T here is the translation tensor of the atom.

A great number of temperature factors (which are closely related to the translation
tensor above) and atomic positions are normally determined in diffraction studies (42).

The approximation assuming uncorrelated atomic motions is probably at its worst
for molecular solids in which the amplitudes of the intramolecular oscillations may be
expected to be small compared to the motions of the molecules as a whole. Accordingly,
several authors have derived methods for making rigid-body motion analysis (43—<47).
The rigid-body motion is described to second order by the tensors T, L, and S, where T
is the translational tensor, L the librational tensor (torsional oscillation), and S the
screw tensor, which may be interpreted as the tensor which describes the coupling
between T and L (the TLS model; an alternative formulation is the somewhat related
TLX model (45)).

It has been shown (48-50) that the second moment is unaltered by isotropic and
uncorrelated atomic vibrations. It would therefore be tempting to conclude that the
vibrational alteration of the second moment can in general be neglected. However,
anisotropy as well as correlations of the vibrations do affect the second moment, as
indicated by the results of several experimental studies (51, 52).

The alteration of the second moment due to vibrational motion has been investigated
by Ibers and Stevenson (53), and the effect on the line splittings in hydrates (which are
closely related to the second moments) has been studied comprehensively by Pedersen
(54-56). Recently, Polak et al. have analyzed the alteration of the second moment
caused by intramolecular (57) and intermolecular (58) rigid-body vibrations.
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Approximations

Some approximations are now made in the light of the results given in the Introduc-
tion. The alterations of the second moments due to intermolecular vibrations are
neglected for the following reasons. (a) They are zero if the motions are isotropic and
urncorrelated, (b) they may vary in sign, (c) the relative reduction becomes small at
large atom-atom distances, and (d) the intermolecular second moment can be com-
paratively small anyway.

The rigid-body approximation is used for the intramolecular vibrations. However,
this approximation is not always a very good one since segments of a molecule (such
as methyl groups) may have considerable vibrational mobility relative to the rest of
the molecule. However, as is illustrated below, such problems cause very little difficulty,
sirice the calculations can be performed in steps: first on the segments and then on the
molecule as a whole. (The vibrational alteration caused by interactions between such
groups or any such group and the rest of the molecule are then partially neglected.)

The assumptions made imply that the interatomic distances to be used in the cal-
culations are constant. Furthermore, only the librational parts of the molecular
vibrations need to be considered since only the relative positions of two atoms affect
the second moment.

Mathematical Derivations

The approach used by Shmueli ez al. (57) is applied here in the initial stages of a more
general derivation of expressions for the librationally reduced second moment tensors.

As illustrated in Fig. 2, the vector r is transformed to r, by a rotation ¢ radians
around the axis ¢. We obtain

r, =(c/c*)(F-0),
r, =r—(c/c*)(¥-c),

I, =Ty,
r., =r,cos(c) + [(c x r)/c]sin(c),
r,=r+(@,—1r)
=r+ “f———g—s@—)(Cr—czr) + s-iP-c(i)(c xr),

where C = cé. For small angles:

I.=r+4Cr—c’r)+cexr
=r+C,r+Cr,
where C, = 4(C — ¢*T) and

0 —C3 €
C, = (c3 0 —cl) , where (¢4, ¢, ¢3) = €.
—Cc; €4 0
Furthermore, o~
Iefp =R =<K+ C,r+C, 1)+ C,r+C.r)p
={r+C,r+C ) +iC, -FC)))
=<(R>+(RC,;)> - (RC) +<C;R)> +<{C,RC,)
—<(C;RC > +<(C R +<C, RC;> - (C RC).
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c
R
FiG. 2. The vector r is rotated through an angle ¢ around an axis ¢ so that it coincides with r,.

The third- and higher-order terms may be neglected:

R>=R+<RC; +C,R)—<C RC). [13]
However, _ _
<CJ_ RC_L> = <R_L CRL> = R.L<C> R_L
3 -~
= ﬁ.L IR, = 1_21 AR (L li) R,
s ) z
= ;1 )»i Li_l_ RLi_L;
where

0 —Fry Iy 0 Iy, -l
R_‘_= r3 0 _rl ) LiJ_= _113 O lil N
~r2 N 0 liz "lu 0

and {C)> =L, the libration tensor, which can be split up into its eigenvalues 4; and
eigenvectors 1,.
Equation [13] can now be written

Ry =(1-TrL)R+4LR +RL) + é 4L, RL, =ER. [14]

The operator E in Eq. [14] is a linear operator (although not a simple matrix). It can
be shown by explicit evaluations that the trace of a symmetric matrix is invariant under
operations by E.

The librational reduction matrix, T*°, is defined by the formula

5
EB,= > T,,B,, wherek=1,...,5. [15]
m=1

The rest of the derivation is very similar to that for reorientational rigid-body motion.
The product (1/r%)(3R — I'TrR) in formula [3] should be substituted for

(1/r%) (3R> — ITrR,) = (1/r5) GER — ITrR) = é a i Tyn B,
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The result is
SO = TOST® (16]

Again S is the rigid second moment tensor, and SV is the second moment tensor
reduced by the librational motion. The formula is clearly also valid in cases where S
is already reduced by any internal motion.

The second moment tensor for isotropic librations is evaluated as an example:
L = <c®I =3} TrL, since the librations are isotropic. The diagonal elements of T®
then become 1 — 3{¢*)> and the others zero, which implies that

SO =(1-3(®)S~(1-6(c*)S
or [17]
(e = (M, ~ M,V)/6M,

for any orientation. This result is consistent with that obtained for less general cases
in (57).

Results and Discussion

It is shown in formulas [14, 15, 16] that a reasonable estimate of the vibrational
average of the second moment tensor may be obtained if the librational tensors are
known. The method has the important property that all the summations in Van Vleck’s
formula can be performed before the vibrational average is taken. The librational
reduction matrix T depends namely only on the corresponding libration tensor.
Conversely, components of the libration tensor may be evaluated if T has been deter-
mined experimentally; the symmetry involved has to be carefully considered since it
may not be possible to determine the librational tensor uniquely. The reduction of the
second moment due to isotropic librations is given by [17].

The effect of vibrational motion on the relaxation times in the laboratory and rotating
frames of reference are discussed in the subsequent article (4).
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