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It is shown that the second moment of a dipolar solid can be written as a sum of 
products of real second-order spherical harmonic functions. This sum can be 
contracted to a quadratic form, $q, where q depends only on the direction of the 
magnetic field and S, the second moment tensor, only on the crystal structure and 
the assumptions made concerning the molecular motions. The effects on S of 
symmetry, rigid-body reorientations, and librational motion are investigated 
quantitatively. A formula for the second moment of a powder is also given. The 
procedure is illustrated by refinements of the relative hydrogen positions in oxalic 
acid dihydrate from experimental second moments. 

GENERAL INTRODUCTION 
ln 1953 Andrew and Eades (2) concluded from NMR data that the molecules in 

solid benzene reorient around their sixfold pseudosymmetry axes. Since then, numerous 
investigations using continuous-wave and pulse NMR have determined different types 
of motion in solids: free and hindered rotation, conformational motion (2), collective 
reorientational processes (3), diffusional motion, and lattice vibrations. The NMR 
technique is well suited for such studies which provide valuable information about the 
dynamic properties of solids. 

It is the purpose of this and the subsequent (4) paper to illustrate, using second 
moment tensors, that second moments from a wide-line study are actually closely 
related to the relaxation constants obtained from measurements of T1 and TIP. It is 
also the author’s purpose to demonstrate that second moment tensors may readily be 
calculated theoretically from the known crystal structure and from assumptions about 
the reorientational and vibrational motions taking place. A summary of some of the 
results obtained is given in (5). 

In Part I expressions are derived for the second moment tensor in the presence of 
reorientational motion including rigid-body reorientations. Symmetry constraints are 
investigated and an expression is derived for the second moment of a powder. The 
procedure is illustrated by calculations on oxalic acid dihydrate. The topic “Vibrational 
Motion” requires a special introduction and is therefore treated separately in Part Il. 

Introduction 
I. THE SECOND MOMENT TENSOR 

The lineshape of an NMR spectrum of a dipolar solid is, in general, difficult to 
calculate theoretically (6); the Van Vleck formula (7-10) for the second moment is 
therefore usually used. The direct application of this formula has, however, several 
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disadvantages : The tedious calculations must be carried out for each of the orientations 
of a single crystal and for a number of evenly distributed orientations sufficiently large 
to enable an estimate to be made of the average over a powder. (The latter procedure 
is necessary only when molecular motions occur.) Furthermore, it is not clear from 
the formula how the situation is affected by symmetry, how many independent para- 
meters one may determine from a set of experimental data, or how averaging over 
lattice vibrations may be carried out. In 1959 McCall and Hamming (II, 12) proposed 
a method which allowed the separate evaluation of the orientational and structural 
dependencies of the second moment in rigid solids, and found that, in general, fifteen 
quantities are sufficient to describe the structural dependence of the second moment. 
This method was never used by the authors themselves, but has been applied by others 
(Z3-25), as described in a review article by Gorskaya and Fedin (16). O’Reilly and 
Tsang published a more comprehensive study using more suitable functions for the 
structural dependence of the second moment, namely, the even complex spherical 
harmonics up to and including fourth order (17). Making extensive use of group theory, 
they derived somewhat cumbersome expressions for the symmetry-adapted functions 
and tabulated the number of independent structural parameters for the different crystal 
symmetries. Dereppe (18) recently extended the procedure to include molecular 
motion, and also derived a convenient formula for the average over a powder. In 1969, 
Falaleev, Falaleeva, and Lundin (19) introduced a tensor approach which was later 
supplemented by symmetry considerations (20). Their method is more convenient than 
the others referred to but does not include cases involving molecular reorientations. 
This seriously limits the applicability since relaxation times for rigid solids are usually 
very long. 

Mathematical Derivations 

The second moment tensor. The second moment, M,, of an NMR line broadened by 
dipolar interactions may be calculated according to the well-known Van Vleck formula 
(7-9) 

Mz = M,, + Ma, 
where 

M2, = **(l/N) 2 2 Yj4ft2 lj(Zj + 1) ((btj)*>, 
i=l j=l 

and 
i=l k=l 

b* j = (3 COS* 8* j - l)/rip. 

The quantities M,, and M,, are the contributions from interactions between spins of 
the same and of different kinds, respectively, rij is the distance between atoms i andj 
and 19~~ is the angle between the external magnetic field and the vector connecting two 
atoms. The quantity N is the number of atoms at resonance per unit cell, and y and I 
are the gyromagnetic ratio and spin for a nucleus. 

Two averaging symbols are included in formula [l]. The inner average of blJ is 
taken over all motions characterized by a correlation time sufficiently short to cause 
the maximum possible reduction of the second moment. The outer average takes 
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account of static disorder, or of molecular motion which is too slow to affect the second 
mo.ment. 

To simplify what follows, the indices i and j will be dropped, and the summation 
over i andj will be included in the outer average. Only spins at resonance will be treated 
since the extension required to include the term M2,, is trivial. We can now write 

Mz = a<@>2>, PI 
where a is the proper constant as apparent from formula [l]. 

It is convenient to express the second moment tensor, to be introduced shortly, as 
a function of atom coordinates in an orthonormal system. It is convenient to specify 
the relations between the basis vectors in the orthonormal system i, j, and k and the 
cryc.tallographic axes a, b, and c since the components of a tensor depend on the basis. 
The symmetry considerations later in this paper become particularly simple for the 
following choice: The vector i is parallel to a, j is perpendicular to a and lies in the 
plane defined by a and b and k = i x j. 

Formula [l] can now be rewritten in terms of the interatomic vector 7 = (r1,r2,r3) 
and the unit vector fi = (hl,h2,h3) which is parallel to the external magnetic field. 

b = 3(h)' - r 2 = 3&b) h - r2 
r5 r5 

131 

=(l/r5)&3R-ITrR)b, where R = r?. 

Here I is the identity matrix. This expression may be expanded in the matrices BK 
shown in Table I. 

b=(I/r5)&3R-ITrR)b=h $ a,B,b 
k=l 

= ktl %(@h) = 2 akqk> 
k=l 

TABLE 1 

THE MATRICFS Bka 

a See text. 
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where 
a, = (4??/5r 3) f&(r) and qk = 27~“~ &(h). t51 

The functions & are the second-order spherical harmonic functions shown in Table 2. 
There is no contribution a& since (3R - ITrR) has zero trace. 

TABLE 2 

THE REAL SECOND-ORDER SPHERI- 
CAL HARMONICS ILLUSTRATED AS 

FUNCTIONS OF THE VETOR 
P = (x9 Y, z)” 

4, = (5/16n)“’ [(x2 + yz - 223/p’] 
42 = (15/16n)1’2[(x2 -y*)/p’] 
43 = (15/47v2 @Y/P*) 
qi4 = (15/47?)“2 (XI/p*) 
4s = (15/47w(YW) 

a The definition of the basis 
vectors is given in the text. 

Using [4] we may now rewrite [2]. 

5 
=a 

( 
2 2 z,cijqrqj 

1=1 j=l > 
[61 

This is a quadratic form in q and the symmetric tensor S, where S may be called the 
second moment tensor. 

Reorientational rigid-body motion. Let us assume that the reorientations of a rigid 
body take place at a rate much faster than that corresponding to the linewidth, that 
there are n equally probable configurations, and that each such configuration i is 
described by a real and unitary transformation Ui. Such a transformation contains 
only the rotational part (centered at the origin) of the actual reorientation, since the 
intra-rigid-body second moment is not affected by translations. The matrices B, shown 
in Table 1 and the U, may be used in the definition of T: 

(l/n) ,iI U, Bkai = z, TkrnBmn, k= 1,...,5. 171 

The coefficient for the term B6 is zero since the trace is invariant under a unitary 
transformation. 
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The vector Uir is inserted into [3], [4], and [5] and the proper average is taken over 
the motion : 

1 1 ” ” =---h 2 Ui(3R- ITrR)iJh 
i=l 

Using the relation 

qk’ = i Tkmqm, 
Ill=1 

we can now insert the result from [8] into [6] and obtain 

M2’ = ij’ Sq’ = ijTSTq; PI 
thus., W = %T. The quantity S is the second moment tensor for the rigid body at rest, 
and Sr) is the second moment tensor for the body when it is reorienting. Equation [9] 
holds also in cases where S is already narrowed by internal motions. 

For example, a rigid body reorients around the k axis in such a way that the Ui 
transformations correspond to rotations by 0, 90, 180, and 270 degrees. If the Ui 
are inserted into [7], one obtains T 11 = 1, and Tij = 0 for all other values of i and j. 
The term T may now be inserted in [9], which gives SIICr) = SI1 and &(‘) = 0 otherwise. 
Thus, the reduced second moment is Sllq,*. 

The secondmoment,for apowder. An expression for the average of the second moment 
over the orientations of the crystallites in a powder can readily be derived if we write 
[6] in terms of the orthogonal and normalized spherical harmonic functions shown 
in Table 2: 

M2 = B% = f?. 3 Sijqi qj = 47~ i$l jil Sij 4i(h)*4j(h). ix1 j=l 

The average is 

47C igl j$l slj f 4i 4j dT 

At*= SPlkC- 

i 

=TrS. 
dr 

[lOI 
sphere 

The second moment tensor. The second moment, h4,, of an NMR line broadened by 
dipolar interactions may be calculated according to the well-known Van Vleck formula 
(7-10). This formula was rewritten in the preceding section in the form 

M* = ijsq. PII 
The right-hand side of the formula is a quadratic form in q and S where q depends 
only on the direction of the external magnetic field relative to the crystal (cf. Table 2), 
and S, which may be called the second moment tensor, depends only on the crystal 
structure and the motions present. Since S is a symmetric 5 x 5 tensor there are at 
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most 15 elements to be determined, which also means that at most 15 structural para- 
meters may be determined from comparisons between experimental and calculated 
second moment tensors. This is consistent with earlier results (cf. Introduction). 

Reorientutional rigid-body motion. In many cases encountered in practice a molecule 
or a segment of a molecule reorients as a rigid body. It was shown in the preceding 
section that the intra-rigid-body second moment tensor averaged over the reorienta- 
tional motion, S’), is given by the formula 

V) = TST. WI 
Here S is the second moment tensor for the rigid body at rest and T depends only on 
the reorientations. Equation [12] holds also in cases where S is already reduced by 
any internal motions. 

The second moment of a powder. The second moment averaged over the crystallites 
in a powder is simply the trace (the sum of the diagonal elements) of the second moment 
tensor (cf. preceding section). 

Symmetry considerations. If symmetry is present, it is possible to find a transforma- 
tion of the functions qfqj such that each new function transforms according to one of 
the symmetry species of the group (21). Since the second moment is totally symmetric 
with respect to all symmetry operations, all the coefficients of functions which do not 
belong to the totally symmetric species must vanish. This means that the coefficients 
of the untransformed functions are related to each other in such a way that the total 
symmetry is preserved. 

The symmetry of a periodic solid may be described by one of the 230 space groups 
(22). The NMR spectrum is, however, independent of the translation symmetry, and 
this restricts our considerations to the corresponding 32 point groups. In addition, the 
Hamiltonian for the dipole-dipole interaction has inversion symmetry and thus also 
has the second moment. We need therefore only consider the point group of highest 
symmetry for each of the 11 Laue groups. Such an analysis has been made using group 
theory and the result is shown in Table 3. The number of independent parameters 
which completely describe the second moment for different symmetries agrees with 
those in (5, 17,20). 

It is important that the symmetry elements considered so far are those of the crystal 
structure or have been derived from it. If, instead, the symmetry of the second moment 
itself were to be investigated, one might find that it was higher. Thus, a tetragonal 
crystal structure whose Laue symmetry is 4/m has a second moment tensor whose 
Laue symmetry is 4/mmm. The trigonal point groups 3 and 3rn are similarly related. 
These relations together with the results listed in Table 3 imply that it is only possible to 
determine the crystal cluss of a substance if only its experimental second moment tensor 
is known. This conclusion has been drawn earlier (cf. Refs. 5,20). 

Rejinement of the relative hydrogen positions in oxalic acid dihydrute using second 
moment tensors. The crystal structures of normal and deuterated oxalic acid dihydrate 
have been determined in several diffraction studies (23-29). The structure of the normal 
compound, which is only known to crystallize in the a-phase, was obtained from 
neutron diffraction by Garrett (25) and is illustrated in Fig. 1. In addition, the relative 
positions of the hydrogens have been determined from NMR data by several authors 
(14, 30-32). Dereppe et al. (14) applied the procedure proposed by McCall and 
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Hamming (II, 12) using 350 experimentally obtained second moments of a single 
crystal. HAland and Pedersen (32) compared experimental and calculated lineshapes 
and obtained results in good agreement with those from the neutron diffraction study 
(25). They also critically discussed the results of Dereppe et al., making the criticism 

TABLE 3 

THE POSSIBLE SYMMETRIES OF THE SECOND MOMENT AND THEIR RESTRICTIONS ON THE ELEMENTS OF THE 
SECOND MOMENT TENSOR 

Crystal class Laue symmetry 

No. of 
independent 
parameters 

The nonzero elements of S (S,, = Sji) and 
their symmetry relations 

Triclinic 

Orthorombic 
Tetragonal 
Tetragonal 
TrigonaP 
TrigonaF’ 
Hexagonal 
Cubic 

i &(Cr) 15 
2/m CM 9 
mmm &d I’,,) 6 
4/m Gb 5 
4/mmm D.,,, 4 
3 &(GJ 5 
?m &d 4 
6[mmm Dsh 3 
m3m Td 2 

all 15 

“ The symmetry axis is b. 
” The symmetry axis is c in the corresponding hexagonal cell given in Ref. (22). 

FIG. 1. The crystal structure of oxalic acid dihydrate as given in Ref. (25). 

that they had not taken the flippings of the water molecules into account. The purpose 
of this section is twofold: to illustrate the use of the second moment tensor and to 
redetermine the relative hydrogen positions from the data of Dereppe et al. according 
to a more realistic model for the molecular motion. 

The experimental second moment tensor given in Table 4 was determined in a least- 
squares procedure using the data in (14). Two orientation angles, around the c* and 
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a axes, could also be included in the refinement since the symmetry is monoclinic. 
The total shifts in these angles were only about one degree in both cases, however, 
which thus partly confirms the orientation given in (14). The quantity minimized was 
the root mean square value of (M,(obs) - M,(calc))/M,(calc) and its final value 
became 0.049. The computer program (ESM) used for these calculations is described 
in (33). 

The theoretical second moment tensors for the interactions from within an asym- 
metric unit (the two water hydrogens and the acid hydrogen) and between this unit 
and its 33 nearest neighboring asymmetric units were calculated from the structural 
data in (25). The water molecules are known to reorient around their twofold pseudo- 
symmetry axes (32). This motion was taken into account in the calculations which were 

TABLE 4 

EXPERIMENTAL AND CALCULATED SECOND MOMENT TENSORS IN G” FOR OXALIC ACID DIHYDRATL? 

s II 2&z 2s,+ &2 2s~ &, 2&s s44 S 55 

Experimental 2.053 -0.396 5.130 1.460 0.087 6.254 7.116 5.612 3.141 

Theoretical intraunit 4.724 1.866 8.746 0.854 1.790 11.437 8.406 4.050 1.689 
Theoretical interunit 0.781 -0.125 0.225 0.665 0.059 0.841 0.342 0.448 0.491 

Intraunit tensors in 
refinements of the 
structure* 

observed 1.272 -0.271 4.905 0.795 0.028 5.413 6.774 5.164 2.650 
calculated 1.237 -0.256 5.043 0.637 0.043 5.479 6.662 5.227 2.422 

a St, = S,, ; the elements not listed are zero. 
b See text. 

performed as described earlier (34,35) using the general program PSM (33,3.5), which 
is based on the procedure described above. The result is shown in Table 4. 

It was assumed that the detailed geometry has little effect on the theoretical inter- 
asymmetric unit second moment. The difference between the experimental and the 
theoretical interasymmetric unit second moment tensors was therefore used in the 
subsequent least-squares refinements of the relative hydrogen positions in the asym- 
metric unit. The interatomic distances and angles between the interatomic vectors and 
the crystallographic axes are shown in Table 5, together with the results from earlier 
studies. The intra-asymmetric unit tensor calculated fromthe final positional parameters 
is given in Table 4. 

The agreement obtained in this study between the interatomic vectors and those 
obtained by diffraction methods or lineshape analysis is reasonable in view of the 
systematic errors involved in a second moment study. It is, for instance, well known 
that the second moment is very sensitive to the shape of the wings of the wide-line 
spectrum, and that part of these often have to be excluded because of signal-to-noise 
difficulties. Furthermore, it is well known that the vibrational motion of a water 
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TABLE 5 

STRUCXJRAL DATA FOR THE HYDROGEN ATOMS IN OXALIC ACID DIHYDRATE LABELED IN FIGURE 1, 
COMPARED WITHRESULTS FROM EARLIERSTUDIES' 

- 

i j rij Xl X2 x3 

Garrett (25) (neutron diffraction) 1 2 1.524 40.7 53.8 86.8 
1 3 2.108 47.7 82.3 27.5 
2 3 2.068 82.7 72.5 19.7 

Itoh et al. (30, 31)b (NMR lineshape) 1 2 I .65 40.2 57.6 82.5 
1 3 2.31 43.1 90.0 41.6 
2 3 1.96 77.2 67.6 3.5 

Dcreppe et al. (I@ (NMR second moment) 1 2 1.563 45.2 52.0 81.9 
1 3 2.071 47.6 83.3 27.3 
2 3 2.203 82.3 71.0 20.1 

H;iland and Pedersen (32) (NMR lineshape) 1 2 1.595 38.9 55.5 87.5 
1 3 2.131 46.6 81.4 29.1 
2 3 2.046 83.7 73.5 19.4 

This study (NMR second moment) 1 2 1.66 45.4 55.5 77.4 
1 3 2.03 37.2 87.3 36.7 
2 3 2.16 77.9 67.1 23.1 

o The interatomic distances, r,,, between atoms i and j are shown together with the angles x,, x1, 
and x3 between the interatomic vectors and the crystallographic axes a, b, and c, respectively. 

’ An incorrect model has been used in this study as discussed in Ref. (32). 

molecule causes an increase of the apparent intramolecular NMR distance (36), while 
it decreases the distance observed by diffraction techniques (36,37). 

Discussion 

One advantage of using procedures in which the structural and orientational depen- 
dencies of the second moment are separated is that the summations in Van Vleck’s 
formula only have to be performed once. However, additional features are often 
desired. Real functions are much easier to use than complex ones for computer cal- 
cu.lations. The use of symmetry-adapted functions not only allows the determination 
of a minimal number of parameters, but also in many cases the orientation of the 
crystal. It is important that molecular motion is considered since the relaxation times 
can be forbiddingly long in rigid solids. Furthermore, it is often desirable to be able 
to calculate the average over a powder conveniently, since it is a tedious and sometimes 
almost impossible task to grow large single crystals. Finally, it is well known, particu- 
larly for weakly bonded molecules with small moments of inertia, that the librational 
motions cause a nonnegligible decrease of the second moment (cf. Part II). The applic- 
ability of the present procedure is compared in Table 6 with those of the procedures 
described in the Introduction. The method has been used in experimental studies of 
molecular motion in dimethylammonium (38) and trimethylammonium salts (38, 39). 
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TABLE 6 

A CQMPARIKJNOFTHEAPPLICABILITYOF THEDIFFERENTPROCEDURES FORCALCULATIONSOFSECOND 
MOMENTS’ 

McCall and O’Reilly and Falaleev et al. Dereppe Present 
Hamming (U,I2) Tsang (17) (19320) (18) study 

Real functions yes 
Symmetry no 
Molecular motion no 
Dynamical average for a powder no 
Librational motion (cf. Part II) no 
Relaxation constants (cf. Ref. (4)) no 

no 
Yes 
no 
no 
no 
no 

yes 
Yes 
no 
no 
no 
no 

no 
no 
yes 
yes 
no 
no 

yes 
yes 
yes 
yes 
yes 
yes 

0 See text. 

htroduction 
II. VIBRATIONAL MOTION 

A general description of the vibrational motion in a solid is very complicated (40,41), 
usually involving several approximations. Such approximations include harmonic 
motion and “low temperature” (most oscillators are in their ground states). The 
problem is still rather complex, however, and one often makes the additional assump- 
tion that the vibrational motions of the atoms are completely uncorrelated. For such 
motions the mean square amplitude of vibration along a direction p is equal to pTp, 
where T here is the translation tensor of the atom. 

A great number of temperature factors (which are closely related to the translation 
tensor above) and atomic positions are normally determined in diffraction studies (42). 

The approximation assuming uncorrelated atomic motions is probably at its worst 
for molecular solids in which the amplitudes of the intramolecular oscillations may be 
expected to be small compared to the motions of the molecules as a whole. Accordingly, 
several authors have derived methods for making rigid-body motion analysis (43-47). 
The rigid-body motion is described to second order by the tensors T, L, and S, where T 
is the translational tensor, L the librational tensor (torsional oscillation), and S the 
screw tensor, which may be interpreted as the tensor which describes the coupling 
between T and L (the TLS model; an alternative formulation is the somewhat related 
TLX model (45)). 

It has been shown (48-50) that the second moment is unaltered by isotropic and 
uncorrelated atomic vibrations. It would therefore be tempting to conclude that the 
vibrational alteration of the second moment can in general be neglected. However, 
anisotropy as well as correlations of the vibrations do affect the second moment, as 
indicated by the results of several experimental studies (51,52). 

The alteration of the second moment due to vibrational motion has been investigated 
by Ibers and Stevenson (53), and the effect on the line splittings in hydrates (which are 
closely related to the second moments) has been studied comprehensively by Pedersen 
(54-56). Recently, Polak et al. have analyzed the alteration of the second moment 
caused by intramolecular (57) and intermolecular (58) rigid-body vibrations. 
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Approximations 
Some approximations are now made in the light of the results given in the Introduc- 

tion. The alterations of the second moments due to intermolecular vibrations are 
neglected for the following reasons. (a) They are zero if the motions are isotropic and 
uncorrelated, (b) they may vary in sign, (c) the relative reduction becomes small at 
large atom-atom distances, and (d) the intermolecular second moment can be com- 
paratively small anyway. 

The rigid-body approximation is used for the intramolecular vibrations. However, 
th:is approximation is not always a very good one since segments of a molecule (such 
as methyl groups) may have considerable vibrational mobility relative to the rest of 
the molecule. However, as is illustrated below, such problems cause very little difficulty, 
since the calculations can be performed in steps: first on the segments and then on the 
molecule as a whole. (The vibrational alteration caused by interactions between such 
groups or any such group and the rest of the molecule are then partially neglected.) 

‘The assumptions made imply that the interatomic distances to be used in the cal- 
culations are constant. Furthermore, only the librational parts of the molecular 
vibrations need to be considered since only the relative positions of two atoms affect 
the second moment. 

Mathematical Derivations 

The approach used by Shmueli et al. (57) is applied here in the initial stages of a more 
general derivation of expressions for the librationally reduced second moment tensors. 

.4s illustrated in Fig. 2, the vector r is transformed to rc by a rotation c radians 
around the axis c. We obtain 

r,, = (c/c’)(i*c), 
rl = r - (c/c’) (is c), 

r c II = rll, 
r cI = rl cos (c) + [(c x rJc] sin (c), 
rc = r + (rc - r) 

~~+(‘~CoS(C))(~r-c2r)+Sin(~xr) 
C2 

2 
C 

where C = cE. For small angles : 
r,=r++(Cr-c2r)+cxr 

=r+C,,r+C,r, 
where C,, = $(C - c21) and 

C,= EC2 c fq), where(c,,c,,c,)=E. 

Furthermore, 
n-l 

(r~fc)=(Rc)=((r+CIIr+Cl.r)(r+C,,r+Clr)) 
=((r+C,,r+C,r)(i+iC,, -iC,)) 

=<R)+(RC,,)-(RC,)+(C,,R)+(C,,RC,,) 
-CC, RC,) + <C,R) + CC,=,) - (C,RC,). 
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FIG. 2. The vector r is rotated through an angle c around an axis c so that it coincides with r,. 

The third- and higher-order terms may be neglected : 

(R,) = R + (RC ,, + C ,, R) - (C, RC,). 
However, 

]131 

where 

(e, RC,) = (R, CR,) = R,(C) R, 

= Isi, LR, = 5 II &(I1 I,) R, 
l=l 

= ii l A EiI WI, 

Rl=(3, r ‘lj, LtL=(;u ;,, i?j, 

and (C) = L, the libration tensor, which can be split up into its eigenvalues li and 
eigenvectors li. 

Equation [13] can now be written 

(R,) = (1 - Tr L) R + +(LR + RL) + 5 A1 LiI RLI, = ER. 
i=l 

1141 

The operator E in Eq. [14] is a linear operator (although not a simple matrix). It can 
be shown by explicit evaluations that the trace of a symmetric matrix is invariant under 
operations by E. 

The librational reduction matrix, T(l), is defined by the formula 

EB, = i Tkmo) B,, 
?lI=l 

where k = 1,. . ., 5. t151 

The rest of the derivation is very similar to that for reorientational rigid-body motion. 
The product (l/r ‘) (3R - ITr R) in formula [3] should be substituted for 

(l/r5)(3(R,) - ITrR,) = (l/r5)(3ER - ITrR) = 5 ak m21 TkmB,. 
k=l 
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Tlhe result is 

Again S is the rigid second moment tensor, and S”’ is the second moment tensor 
reduced by the librational motion. The formula is clearly also valid in cases where S 
is already reduced by any internal motion. 

The second moment tensor for isotropic librations is evaluated as an example: 
L = (c2)I = +ITr L, since the librations are isotropic. The diagonal elements of T”’ 
then become 1 - 3(c2) and the others zero, which implies that 

S"' = (I - ~(c~))~S w (1 - 6(c2))S 
OX [I71 

(c') w (M2 - M2"')/6M2 

for any orientation. This result is consistent with that obtained for less general cases 
in (57). 

Results and Discussion 

It is shown in formulas [14, 15, 161 that a reasonable estimate of the vibrational 
average of the second moment tensor may be obtained if the librational tensors are 
known. The method has the important property that all the summations in Van Vleck’s 
formula can be performed before the vibrational average is taken. The librational 
reduction matrix T depends namely only on the corresponding libration tensor. 
Conversely, components of the libration tensor may be evaluated if T has been deter- 
mined experimentally; the symmetry involved has to be carefully considered since it 
may not be possible to determine the librational tensor uniquely. The reduction of the 
second moment due to isotropic librations is given by [ 171. 

The effect of vibrational motion on the relaxation times in the laboratory and rotating 
frames of reference are discussed in the subsequent article (4). 
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