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It is shown that the relaxation time of a dipolar solid can be calculated from second 
moment tensors if the correlation times of the motional processes are known. 
Expressions are derived for the relaxation times in the laboratory and in the rotating 
frames of mono- and polycrystalline samples in the presence of one or several 
motional processes. The procedure is illustrated by calculations of theoretical 
relaxation constants for the trimethylammonium ion. 

INTRODUCTION 
Fundamental equations for the relaxation caused by molecular motion in dipolar 

so1id.s have been derived by Bloembergen, Purcell, and Pound (2) and by Kubo and 
Tomita (2). Much of the further development is described in (3-24). General methods 
for the calculation of relaxation constants and their rates have been developed by Run- 
nels (25), Onsager and Runnels (26), and Punkkinen (17). Such calculations are 
considerably more complicated than those of second moments. For a polycrystalline 
sample, however, they may be greatly simplified, as shown recently by Soda and Chi- 
hara (18), since the relaxation constant in this case is proportional to the difference 
between the rigid second moment and the second moment averaged over the thermal 
motion. 

It was shown in the preceding article (19) that theoretical second moments can readily 
be evaluated from the second moment tensor, which depends only on the crystal 
structure and the motions present. It is shown below using second moment tensors that 
the relaxation constant and the second moment of a mono- or polycrystalline sample 
are r’elated in a simple way. Cases in which there are several different motions are also 
treated on the assumption that the various motions are completely uncorrelated. 

MATHEMATICAL DERIVATIONS 
Expressions for the relaxation times in the presence of one reorientational process. 

Seco:nd moment tensors can be used for calculations of relaxation times, or rather the 
relaxation constants, since the reorientation rates (the inverse to the correlation times) 
usually have to be determined experimentally. Let us assume that there are n 
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configurations of equal probability and that the jumping rate between any two of 
them is p/n. For a pair of atoms originally in configuration 1, we get : 

P,(O) = 1, 
P,(O) = 0, i # 1, PI 
Pi(W) = l/n. 

and 
n*lil=-PlP(n- l)+P,c'b- 11, i# 1, 

n’hi=PIPLPPIP, i# 1. u 

The differential equation [2] together with the initial conditions [l] has the solution 

h(t) = (l/n> + Kn - l)/~le-cf, 
~~0) = (lln) - (VO emu’, 

where, by symmetry, pz = p3, . . . . 
In general, if a pair of atoms at time c = 0 has the configuration i, then the probability 

that at a later time t it has the configurationj is given by 

Pijtt) = (l/n) + 0 - 1)/n] e-fit, i=j, 
PijCt) = (l/n) - We-Lf, ( i#j. 

The definitions of P) and G(t)(“) in (4) are used in the following derviation. 

G(t)‘“’ = ; 2 (F,‘“‘(O)F,‘“‘(t)‘) 
i-1 

1” n =- 
n cc Fi’“‘(0)Fj’m’(O)‘pl,(t) 

i=l j=l 

1 n n ” n II 
=- 

n2 cc 
Fi(m) FjMO * + i 

c 
FiO”n) Fi(“‘)* - $ 

cc 
Fi(m) FJ(m) * e-fit 

i=l I=1 I=1 I=1 J=l 1 
= (F’“‘) (F(m)) + [(F(nt)F(m)*) _ (F(m)) (F(m)*)]e-“’ 

The Fourier transform is 

J’“‘(mo) = 2[(F’“‘F(“)*) - (F’“‘) (F’““)] ~2 +;202 + 

The functions F@‘) are related to a (cf. [4] in the preceding article (29)) by the relation 
F(m) =fm+m)Ta, [41 

where f. = 1, fkl = 1/61/2, and ff2 = (+) 1/Z The term a is proportional to the real . 
second-order spherical harmonic functions defined in (19, Eqs. [4] and [5]). The matrix 
T transforms the functions a in the three-dimensional space, and is given by the relation 

UB,$= 2 Tk,Bm 

(29, Eq. [7]). The term U is a matrix which &msforms the vector h = (Al, h2, h3) (that is, 
an arbitrary direction of the magnetic field) to h = (0, 0, 1). This condition does not 
define U uniquely. It can easily be shown, however, that this choice is immaterial since 
we are actually only interested in the rotationally symmetric part of aH around the 
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TABLE 1 

THE ORTH~WNAL MATRIX V’ 
NORMALIZED IN THE SAME WAY AS 

qb 

0 & i& 0 0 
4s 

i .I 
;: : f b” 
0 0 0 E -ie 
0 E -i& 0 0 

a See text. 
b E = 2-w, j = (-1)1/Z 

magnetic field direction. The vectors v(‘“) are the rows of the matrix V shown in Table 1 
(v(-~) is the first row, v(-‘) the second, etc.). The matrix V transforms the real second- 
order spherical harmonic functions to the corresponding complex ones and is normalized 
similarly to q. 

Formula [4] may be used for the evaluations of the averages in [3] : 
,gXNpO*) =fm2 ((p) Ta) (j(m) Ta)* 

= fm2 ((P) Ta) @TV(“)*)) 
= f,’ (y(“‘) T(aa) Tvcrn) *) = fmzv@‘) T(&) TV(~)* 
= (fmz/a)B""'~ Srisid TV(“)* 

and 
(p)) (p0 *) = f 2 @m) TTaj (gvON* I > 

z .ilz Ocm) T((a> (5)) TV(“)’ 
=(fm2/cx)~(mt~SSmotion TV(~)*, 

where S is the second moment tensor derived in (19). 
Formula [3] may now be rewritten 

%I, J’“‘(mo) = - (Jcm) ?fA STv’““) P 
a p2+ t??d’ bl 

where 
AS = Srigid - Smotion 

The Iquantity Pm) is defined by the relation 
Kc”) = B(m) TA STv(@ * PI 

It may easily be seen from the formula that KCm) is always a real quantity. Furthermore, 
the caientational dependence of Kc”) can always be described by any complete set of 
functions which are fourth order in the components of h = (A,, h2, h3). This can be shown 
by evaluation of F (m) F MI)* for an arbitrary direction of an internuclear vector and the 
magnetic field. The functions qiqj, which form such a set, will be used here since they 
form the basis for the second moment tensor, and since they make the symmetry con- 
siderations particularly convenient. Thus, the aim is to find tensors AS’“’ such that 
formula [6] may be written 

Kc”‘) = +l SC”‘) q. [71 
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An algebraic evaluation of dS(“) as a function of (S,,,,, - Smotion) is straightforward 
but discouragingly tedious. Instead, a computer program was written which calculated 
K(“) for 45 evenly distributed points on a hemisphere using 15 linearly independent 
second moment tensors. The corresponding tensors dS”” were then evaluated from the 
values of P) by a least-squares procedure. As expected, AS(O) turned out to be equal to 
CSri*id - s motion). The relations between dS”) and AS’) are given in Table 2a and those 
between AS(O) and AS@) in Table 2b. The relations between AS’) and AS2’ can easily be 
evaluated from those given in Table 2. 

TABLE 2 

THE RELATIONS BETWEEN THE RELAXATION TENSX~ 

So) AND S(l) (2a), AND S(O) AND W (2b) 

2a 

Sll”’ = t (3S‘M’O + 3&5(O)) 
SlZ (1) = + (2ds44’o’ - 2fis5p9 
S’3”’ = & (2ds,,‘“‘) 

s,,(O) = + (-&2(l) - &&1) + 2&4(1) + 2&,9 
S**(O) = + (S,*(l) + 2ds44(1) - 2&p) 
St3 (0) = f: (S13(‘) + 2ds4p) 
S14(0) = + (-2s14(1) - ds24(‘) - d&p)) 
&5 (0) = f (-2s,p + d&p - ds34(‘)) 
S22’0’ = 3 (-S’,“’ + 3&3(19 
S23’0’ = 3 (-3S#) 
&4(O) = + (--d&4(1) + 3&p)) 
&&O) = + (d&p) - 3SJ49 
SJJ’ = + (7s”“’ + 3&“‘) 
&4(O) = + (-d&p - 3&p)) 
&5(O) = +(-d&4” + 3s*4q 

s44 (0) = f- (2Sll”’ + dS,*(‘)) 
s4p = 3 (2dS’3(‘)) 
SgJ) = + (2&l”’ - dS,*(‘)) 

2b 

&‘2’ = + (3&‘0 + 3wJ’) 
SIZ(Z’ = & (-3s1p’ - 2&44(o) + 2&55(O)) 
&‘2’ = Q (-3&p - 2ds4,(9 

S14’2’ = & (-d&4@) + dS,,(O’) 
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TABLE 2-Continued 

S15(2’ = & (-d&5(“) + dS,,(“‘) 
&*(2) = & (3&(O) - &3(O) + 2&4(O) + 2S55(o)) 
S23(2) = & (&3(O)) 
S2.4 c2) = 4 (d&(O) - 2&.,(‘) - 3S35”‘) 
s# = 3 (-d&s (0) - 2S2p - 3Sa4(0)) 
s3p = * (3S,,‘O’ - &(O) + 2.$4(O) + 2&p’) 
&4(Z) = & (dS15(o) + 3&5(O) - 2&4”‘) 
&(*) = 4 (d&(O) - 3&4(O) - 2&5(‘)) 
&(*) = & (-dS,,‘“’ + 2&2”’ + 2&333(‘) + 2S55”‘) 
s4p = & (-MS, 3 (0’ - 2&u%) 
s55 U’ = & (dS, 2 (0’ + 2&(O) + 2&3(O) + 2&344(O)) 

&l’o’ = 3&,‘2’ + s,2’2’ + s3j(2’ - 2S44(2) - 2S55’2’ 
s12(o’ = 2S12 - 2dS.+4(2J + 2dSs5”’ 
S13(O’ = 2S,s’2’ - 2dS45(2) 
L?,~(O’ = 5S14’2’ + d&4(*) + d&5(*) 
s,5(o’ = 5Sj sc2’ - d&&*) + d&., (2’ 
sz*(o’ = &I (2’ + 3&(2) - 3&(2’ 
Sz3(0) = 6S21’2’ 
Sz4(O’ = dS14’2’ + 3S24”’ - 3S35”’ 
Sz5’o’ = -dS,5’2’ + 3&5”’ + 3S34”’ 
S33 (0) = &,‘2’ - 3&(Z) + 3&(Z) 
&(O’ = dSJ2’ + 3S2,“’ + 3S,, (2, 
S35(o) = dS14’z’ - 3&324 + 3&5(‘) 
&(O) = -2S11’2’ - d&(*) + 3S44”’ 
&(O’ = -2d&(‘) + 3S.9 
s&o) = -2S1,‘2’ + dS,zC2) + 3S55’2’ 

Tlhe same results as those listed in Table 2 were also obtained in a similar but inde- 
pendent analysis using a second moment tensor based on the complex second-order 
spherical harmonics and their transformation matrix which is given in (26). 

Equations [5], [6], and [7] may be inserted in the formulas for the relaxation time in 
the laboratory (4) and rotating (8, 21-13) frames : 

T,-’ = +fh2z(z+ l)[J”‘(O~O) + P’(20,)], 
T,,-’ = 3y4PZ(Z+ I) [fcP’(24 + p’(o0) + ~.P’(2cq))] 

The result is 

Tip-1 = K’O’ ’ 

1 + 4q2T2 

+ +K”’ Dl 
wheire r = p-l. The derivations of formulas [8] and [9] are made for a pair of atoms only, 
but it may be shown that they are valid also for systems containing many spins (see also 
(.w 20). 

The relaxation times in the presence of several processes. In experimental studies of 
relaxation one often comes across cases where more than one relaxation process is 
present, and where one type of motion affects the others. Methods of coping with this 
type of problem have been developed (U-17) and initially we shall follow the one 
demonstrated by Punkkinen (27) (see also (22)) for the derivation of a procedure which 
permits the use of the second moment tensor. 

16 
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Let us assume that there are two processes where the reorientation of one species 
occurs at a rate pI among m1 different configurations (the probability for one particuar 
jump is then pi/ml), that the other reorients at a rate pz among m, different configur- 
ations, and that the probability is the same for all configurations within a certain 
reorientational species. 

Assume, furthermore, that the processes are completely independent, i.e., a reorien- 
tation of one species does not effect the reorientation probability of the other. (This is, 
for instance, not the case for the threefold reorientations of an ammonium ion.) The 
differential equations can now be written in the same way as in [2], using matrix 
notation. 

d(W 

NO) 

i, 

= 
m) 

?xll> ( -- m, - 1 
mt 

Pl 
m2 

- - P2 Pl -- m, - 1 

P2 

mt 

-- PI m, -- ml - - m2-1 0 1 A 

m2 m2 
/12 

---- P2 mz-1 572 - 0 m, - 1 
--P2 

---- m, m2 - 0 - - 1 1 
m2 

m2 m2 mt mt 
Pl 

0 
P2 Pl CL1 P2 

m2 mt mt m2 

P(O0) 

P(l0) 
X i 1 P(O1) 

P(l1) 

where ~(00) is the probability that the system has the initial configuration, p( 10) is the 
probability for each of the configurations which are different from the original configur- 
ation, but which can be reached from it by a single jump according to process I, ~(01) 
is the corresponding probability for process 2, and ~(11) is the probability for each 
of the remaining configurations. Using the initial condition (at t = 0) that ~(00) = 1 and 
p( 10) = ~(01) = p( 11) = 0, the solution becomes 

P(O0) 1 m,-1 m,-1 (ml-l)(m,-1) e-O. t 

P(10) 1 ii i 1 -1 m2 - 1 l-m, 

~(01) = G 1 m, - 1 -1 l-m, 

ji e-m’ i 

e-w 
P(ll) 1 -1 -1 1 e-(“+‘2N 
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It can be shown that similar result would, under the initial conditions, be obtained 
for any number of processes. The general solution is given by 

p(oo0 . . . 0) = 
1 

m1m2m3.. . m, 
(1 + (m, - l)e-p’r + (m, - l)(mz - l)e-@l+@)t 

+ (m, - 1) (mz - 1) (m3 - 1) ec(“1+u2+u3)t + . . . 
+ (m, - l)(m,, - l)(m3 - 1). . . (m, - l)e-(a1+P*+rc3+“.+Pn)r 

plus other terms given by the symmetry of the problem). 
To obtain the other functionsp, one need only omit the values of mi in the expression 

in parentheses which do not correspond to zeros in the argument for p. 
The solution for p can be used in a more general derivation similar to the one leading 

to Eq. [3]. The full derivation will not be given here, but results in expressions of the 
type given in the next section. 

RESULTS 
Expressions for the relaxation times. Derivations in the above section resulted in the 

following formulas for the relaxation times in the presence of one reorientational 
process : 

1101 

where 
K(m) = qAS(“) q. P21 

The functions q1 depend on the direction of the external magnetic field relative to the 
crystal and are given in [5] of the preceding article (19). ASo’ is equal to Sripid - Sirnotion, 
where S is the second moment tensor which depends only on the crystal structure and 
the motions present as described in (19). AS (O), AS(l), and AS@’ are interrelated by simple 
transformations given in Table 2. 

The derivations of the corresponding expressions for more than one motional process 
are briefly outlined in the above section and the results are the following. 

For two processes : 
0, K’“‘(o0) = Q[Py 1 I)] q, 
h K’“‘(10) = ij[W(Ol) - S’“‘(1 l)]q, 
P2> P)(Ol) = fj[P)(lO) - S’“‘(ll)]q, [131 

Pl+Pz~ K’“‘( 11) = ~[W(OO) - S’“‘( 10) - S’“‘(O1) + S’“‘( 1 I)] q, 
where S’“‘( 11) refers to the second moment tensor whose elements are reduced by both 
motions, and are transformed according to Table 2, S”)(Ol) refers to the second 
moment tensor whose elements are reduced by motion number 2. The corresponding 
rates (pi = ri-‘) are given to the left of the equations. These equations may now be used 
in the expressions for the relaxation time. For example, 

T,-‘~3 % 
??I==1 

m2h 

p12 + mz wo2 
+ K’“‘(01) m2p2 + K’“‘( 11) m2bl + 1~~) 

- p22 + m2 oo2 0-h f fd2 + m2 oo2 I 
[I41 
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Dropping the index m, we obtain for three processes : 

For four processes : 

0, 
h 
ccl + P29 

/4+ P2 + P3? 

4% + P2 + P3 + P49 

K(OO0) = ij[S( 11 I)]q, 
K(100) = B[S(Oll) - S(11 l)]q, 
K(O10) = ip(101) - S(lll)]q, 
K(OO1) = Q[S(llO) - S(11 I)]q, 
K(11o)=~[s(oo1)-s(o1l)-s(1o1)+s(lll)]q, 
K(1o1)=Q[s(o1o)-s(11o)-s(o11)+s(lll)]q, 
K(O11) =q[s(loo) - S(110) - S(101) + S(lll)]q, 
K(111) = ij[S(OOO) - S(100) - S(O10) - S(oo1) 

+s(llo)+s(lol)+s(oll)-S(lll)]q. 

WI 

K(OOo0) = lj[S( 111 l)] q, 
K(1000) =ij[s(olll) -S(llll)]q, 
K(1100)=~[S(oo11)-S(lOll)-S(Olll)fS(llll)]q, 
K(1110) = ij[S(Oool) - S(1001) - S(O101) - S(OO11) 

+ S(1101) + S(1011) + S(Olll) - S(llll)]q, [16] 
K(1111) = q[s(OOOO) - S(lOO0) - S(OlO0) - s(oolo) 

- S(OOO1) + S(1100) + S(1010) + S(1001) 
+ S(O110) + S(O101) + S(OO11) - S(1110) 
- S(1101) - S(1011) - S(Oll1) + S(llll)]q. 

The other relations are given by symmetry. Similar results would be obtained for any 
number of processes. 

The relaxation times for a powder. Although the TI and T,, relaxation for a single 
crystal is usually exponential (but see (20, 22)) this is not generally so for a powder. 
The spin diffusion process is often not fast enough to give a spin temperature which is 
common to all crystallites of different orientations. The experimentally observed 
relaxation is, however, frequently exponential, and we shall make the approximation 
that the inverse relaxation time for a powder is just the average of the inverse relaxation 
times of the crystallites. This implies that the above formulas are valid also for poly- 

cm) crystalline samples if the powder average over K (=Rcm)) is substituted for P). 
Furthermore, I?“‘) = qAS’“‘q = Tr AS M) (cf. the preceding paper (19)) and Tr AS(O) = 
Tr So) = Tr AS2) = An;i, (cf. Table 2 and (19)). The relaxation times for one reorien- 
tational process in a polycrystalline sample are thus : 

Tl-l = +[n;i,rigid - m2mot*on 
][I +:o%2+ 1 +:io%“]p 

[171 

Tlo-‘= +[n;i,r,gi, - Jfzmotion l[~1+/4~,"r2+fL+:02r'+1+~02r2 * [181 1 
These results are consistent with those obtained in (18). 

Symmetry. It can readily be seen from Table 3 in the preceding paper (19) and 
Table 2 that AS(O), AS(l), and AS2) in general have the same symmetry. Formulas 
[lo]-[16] indicate that this restriction also applies to T,, TIpr and M2. 
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Vibrational motion. It follows directly from the results in this section that, in order to 
calculate the relaxation constants in the presence of librational motion, one need only 
use the librationally averaged second moment tensors instead of the usual ones (cf. the 
preceding article (29)). 

Simplifications. Some simplifications of practical importance arise in cases where the 
reorientation rates are sufficiently different in magnitude. For example, assume that 
there are two processes, and that p1 $ p2. Then +u~ + ~1~ x pz and Eq. [ 141 reduces to 

T,-’ = + K’“‘(l0) m2h + (K’““(O1) + K’“‘( 11)) ~22 ;2;;002 . 
p12 + m2 oo2 I 

This explains why expressions of this type can be used successfully in many experi- 
mental studies of the relaxation time vs temperature (see, for example, (23-X)). 

2.10'" 

1O'O 

0 30 60 90 
XVI 

FIG. la. The second moment for a rigid and a reorienting methyl group as a function of the angle 
between the symmetry axis and the external magnetic field. 

Another important explanation is, of course, that K’““( 11) may be small. The com- 
putational problem is reduced if some of the pi are equal; this is illustrated for the 
trimethylammonium ion later in this section. 

The second moment and relaxation constant as a function of orientation for a methyl 
groq Let us assume that the threefold symmetry axis is parallel to the vector k, (cf. 
the preceding article (19)) and that the jumps consist of rotations by 0, 120, and 240 
degrees around this axis. The second moment tensor for the rigid case has the following 
elements S,, = 2a/(5r6), S,, = & = 3cr/(W) and the others are zero, with c(, as in (19), 
the constant in Van Vleck’s formula. The tensor for the case of the molecule in motion 
has the elements S,, = 2a/(W) and the others are zero. The orientational dependence 
of the second moment is of the form M, ripid = arv6[0.5(1 - 3h,2)2 + 2.25(1 - h32)2] and 
A4 2rnotion = 0.5 arm6(1 - 3h,2)2, where hJ = cosx and x is the angle between the magnetic 
field. and the symmetry axis. These results are illustrated in Fig. la. The quantities 
KC”’ may be obtained using Table 2 and formula [7] : 

K(O) = 2.25ar -“( 1 - h,2)2, 
K(l) = 1 .5are6(1 - hs4), 
KC” = 0.375arw6(1 + 6hs2 + hs4). 
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The orientational dependence of Kc”‘) is illustrated in Fig. lb. Formula [8] shows that 
T,-’ is proportional to K(l) + Kt2) for 1 < ~~~~~ and to K(i) + 4P’ for 1 $ wo2r2. 

The relaxation rates and constants for molecular motion of the trimethylammonium 
ion. Expressions for the relaxation rates and constants for the molecular motion of the 
cation in trimethylammonium hydrogen oxalate have recently been derived (22) ac- 
cording to a method developed by Punkkinen (27). These quantitities have been 
reevaluated in this study in order to test the present method by a comparison of the 
results from the two investigations. The assumptions used here will therefore be the 
same as those for the R’ = R” = 0 model in (22). Four reorientational processes take 
place in this trimethylammonium ion: Each of the three methyl groups reorient (at 
rates ,uz = ,u~ = p4) together with reorientations of the cation as a whole (at a rate &. 

I 

0 30 60 90 
x I.1 

FIG. lb. The constants Kc”) which appear in expressions for the relaxation time (cf. text) for a re- 
orienting methyl group as a function of the angle between the symmetry axis and the external magnetic 
field. 

The combined rates are then pl, ,u~ + p2,p1 + 2pz, pul + 3pz, pz, 2y,; and 3~~ as implied 
from the section above. However, no internuclear vector is affected by the combined 
motion of all three methyl groups. The relaxation constants for the rates 3~~ and pi + 3~~ 
thus vanish. 

The expressions relating the constants K(l) and the second moment tensors for four 
processes (cf. [ 161) then reduce to (dropping the index m as before) : 

%I) = @(~Pz) - S(A + $4q, 
KG4 = 3Q[Sol1+ 2~2) - Sk + 3&l q, 

K(P, + 14 = 3arS(2~,) - S(~P~) - sob + 2~~) + sbh + 3cL2)1 q, 
K(2~z) = 3W(~1+ ~4 - ~S(P, + 2~2) + S(pl + 3pJ]q, 

J&h + 2PJ = 3NPz) - S(P, + 4 - 2S(2P,) + 2S(cl1+ $2) + S(3&) - q/i, + 3,uJ] q. 

The argument for K is the corresponding rate, and the argument for S indicates the 
motion over which the average should be taken. Thus, S&i -t 2~~) means the second 
moment tensor averaged over the motion of the whole cation @i) and two of the methyl 
groups (2,~~). In addition, the rigid average (or outer in formula [l] in the preceding 
article (19)) over the three orientations of the cation is assumed. The powder average 
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TABLE 3 
THE POWDER AVERAGES OF THE SECOND MOMENTS (IN Gz) M)R A 

TRIMETHYLAMMONIUMIONFORDIFFERENTHYPOTHETICALMOTIONS' 

Contribution to I& from: 

Type of reorientation Intramethyl Lone proton Intermethyl 

Rigid structure 20.336 4.354 3.658 
One methyl group 15.256 3.722 2.813 
Two methyl groups 10.176 3.090 2.218 
Three methyl groups 5.096 2.458 1.873 
Whole ion only 5.932 0.373 0.708 
Ion + one methyl group 4.243 0.252 0.541 
Ion + two methyl groups 2.553 0.130 0.446 
Ion + three methyl groups 0.864 0.009 0.422 

..- 

0 It is assumed that the reorientations of the methyl groups and the ions as a 
whole take place around the threefold pseudosymmetry axes. 

TABLE 4 
THE CON~~B~TIONSTOTHERELAXATIONCONSTANTS(~R(~))FORAT~ETHYLAMMONIUMION~ 

CALCULATEDFROMTHESECONDMOMENTSINTABLE 3b 

Rate of 
relaxing 
process” Intramethyl Lone proton Intermethyl 

This study Icz 24.18 1.73 0.35 
PlfP2 48.53 7.31 4.60 

PI 20.19 11.69 6.92 
2P2 1.02 

PI + 2P2 2.55 
Sjoblom and Punkkinen (22)’ PL2 24.22 1.74 0.63 

Pl +A 48.45 7.28 4.30 

$2 
19.99 11.68 6.86 

1.16 
Pl + %4(2 2.39 

’ In units of lo8 set+. 
b See text. 
c The reorientation rates are pul and pcz for the ion and a methyl group, respectively. 
* Thse relaxation constants from Sjoblom and Punkkinen (22) (which were calculated using the same 

assumptions) are also shown for comparison. 

of K 11s (as shown above) obtained by omitting q and using the traces of the second 
moment tensors in the relations above. 

The second moments for powder were calculated using the computer program 
PSM (26,27) and the results are given in Table 3. The corresponding relaxation con- 
stants are listed in Table 4 together with those reported in (22) for comparison. The 
agreement is good, and the small differences may well be explained by the errors intro- 
duced by the averaging procedure used in (22). 
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DISCUSSION 
It has been shown above that relaxation constants and second moments are closely 

related. To the author’s knowledge, this has only previously been reported for the case 
of a powder (18). Furthermore, the rates for the combined reorientations may readily 
he found if one assumes that the different processes are uncorrelated. This problem 
has been treated in (22), where it was found that essentially the same results were 
obtained using any reasonable assumption about the correlation, which suggests that 
this approximation is probably a good one. 

The calculations of parameters for relaxation times have in the present approach 
been reduced to essentially calculations of second moments (cf. (19, Discussion, 
Part I)). Other methods (cf. Introduction) require that coupled differential equations 
be solved to give the rates, and that expressions be derived for the generally rather 
cumbersome summations of complex functions. 

It has sometimes been assumed that the relaxation time varies only slightly with 
orientation. This is certainly true in many cases if one compares it with the temperature 
dependence, which is often determined by an Arrhenius equation for the correlation 
time: z = z0 exp(E,/kr). It is evident from Table 2 and formula [8], however, that the 
relative changes in relaxation time as the orientation is altered may, on average, be of 
approximately the same magnitude as that of the second moment. Second moments 
and relaxation times also have the same symmetry, in general. Thus, studies of the 
relaxation time as a function of orientation, although rarely performed, may be expected 
to provide information similar to that of a corresponding second moment study. 

A second moment tensor may be obtained experimentally from measurements of 
second moments for each plateau in the second moment vs temperature curve. Inter- 
mediate values may actually also be used as shown by Andrew and Lipofsky (28). 
A common experimental procedure is to mount the crystal on a device such that any 
vector in the plane of a crystal can be brought into coincidence with the external mag- 
netic field. More than one such mounting may be required in each case since one 
mounting allows the determination of at most five parameters. 

Only differences between second moment tensors may be determined in an experi- 
mental study of the relaxation time vs orientation. For simplicity, we shall only discuss 
the relaxation time in the laboratory frame at constant temperature and for only one 
dynamical process. Under these conditions, at most ten parameters (including the 
correlation time) may be determined for one mounting if measurements are made at 
two frequencies, where one frequency is larger and the other smaller than the inverse 
of the correlation time. The number of different mountings required may thus be 
reduced considerably. Another aspect is that relaxation times are easier to measure and 
evaluate than second moments. 
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