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It is shown that the relaxation time of a dipolar solid can be calculated from second
moment tensors if the correlation times of the motional processes are known.
Expressions are derived for the relaxation times in the laboratory and in the rotating
frames of mono- and polycrystalline samples in the presence of one or several
motional processes. The procedure is illustrated by calculations of theoretical
relaxation constants for the trimethylammonium ion.

INTRODUCTION

Fundamental equations for the relaxation caused by molecular motion in dipolar
solids have been derived by Bloembergen, Purcell, and Pound (/) and by Kubo and
Tomita (2). Much of the further development is described in (3-14). General methods
for the calculation of relaxation constants and their rates have been developed by Run-
nels (15), Onsager and Runnels (/6), and Punkkinen (/7). Such calculations are
considerably more complicated than those of second moments. For a polycrystalline
sample, however, they may be greatly simplified, as shown recently by Soda and Chi-
hara (18), since the relaxation constant in this case is proportional to the difference
between the rigid second moment and the second moment averaged over the thermal
motion.

It was shown in the preceding article (19) that theoretical second moments can readily
be evaluated from the second moment tensor, which depends only on the crystal
structure and the motions present. It is shown below using second moment tensors that
the relaxation constant and the second moment of a mono- or polycrystalline sample
are related in a simple way. Cases in which there are several different motions are also
treated on the assumption that the various motions are completely uncorrelated.

MATHEMATICAL DERIVATIONS
Expressions for the relaxation times in the presence of one reorientational process.
Second moment tensors can be used for calculations of relaxation times, or rather the
relaxation constants, since the reorientation rates (the inverse to the correlation times)
usually have to be determined experimentally. Let us assume that there are n
Copyright © 1976 by Academic Press, Inc. 425
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426 ROLF SIOBLOM

configurations of equal probability and that the jumping rate between any two of
them is u/n. For a pair of atoms originally in configuration I, we get:

P(0)=1,
P,(0)=0, 1#1, [1]
Py(0) = 1/n.
and
”'P1=—P1#(n— 1)+pil-‘(n_ 1)’ i#1, [2]
np;=pip—pifs i#1.

The differential equation [2] together with the initial conditions [1] has the solution
pi(t) = (/n) + [(n — 1)/n] ™™,
pAt)=(1/n) — (1/m)e™,

where, by symmetry, p, =pa, . . ..
In general, if a pair of atoms at time ¢ = 0 has the configuration 7, then the probability
that at a later time ¢ it has the configuration j is given by

i) =(A/m) + [(m—)/nle™,  i=},
pijt)=(1[n)—(Afn)e ™, . P J.
The definitions of F and G(¢)™ in (4) are used in the following derviation.

GY™ = > PO E™(y

i=1

% > FmO) F0) py(e)

i=1 j=1
1 n n 1 n 1 n n
=7 2, 2 FWE DD FOF™ =5 D D FOF ’W]ew
i=1 i=1 j=1

i=1 j=1

— <F(m)> <F(M)> + [<F(m) F(m)*> — <F(m)> <F(m)*>] e Mt
The Fourier transform is

J‘"‘)(mco) — 2[<F(m) F(m)*> — <F(m)> <F(M)‘

]
Nerma (3

The functions F™ are related to a (cf. [4] in the preceding article (19)) by the relation
Fm = £, 3™ T, [4]

where fo =1, fi,=1/6"2, and f,, = ($)"/2. The term a is proportional to the real
second-order spherical harmonic functions defined in (79, Eqs. [4] and [5]). The matrix
T transforms the functions a in the three-dimensional space, and is given by the relation

5
UB, U= > T\,B.,
m=1
(19, Eq. [7])). The term U is a matrix which transforms the vector h = (#,, A,, ;) (that s,
an arbitrary direction of the magnetic field) to h= (0, 0, 1). This condition does not
define U uniquely. It can easily be shown, however, that this choice is immaterial since
we are actually only interested in the rotationally symmetric part of ad around the
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TABLE 1

THE ORTHOGONAL MATRIX V*
NORMALIZED IN THE SAME WAY AS

qb
0 ¢ ie 0 O
] 00 0 ¢ ig
Vil 10 0 0 O
00 0 ¢ —i
0 ¢ —ie 0 O
? See text.

be=27Y2 j= (=1)172,

magnetic field direction. The vectors v are the rows of the matrix V shown in Table 1
(v©? is the first row, v1? the second, etc.). The matrix V transforms the real second-
order spherical harmonic functions to the corresponding complex ones and is normalized
similarly to q.
Formula [4] may be used for the evaluations of the averages in [3]:
(F@F®* = f.2 (¥ Ta) (77 Ta)’
= fo? (™ Ta) GTV™"))
= 1,2 (v T(ad) Tv™*)y = £, 27 T(ad) Tve™*
= (£, 2) V™ T S5 TV™*
and
CF™) CF™) = £, (¥ Ta) HTV™")
= £ 90 T((a) (@) Ty
= (fu /) V™ T S orion TV™?,

where S is the second moment tensor derived in (79).
Formula [3] may now be rewritten
U

J™(mw) = Yo' F™ TASTvm") ———— [5]
« W+

H
m? w?
where
A4S = Srigid - smotion

The quantity K™ is defined by the relation
K™ = §m TASTv™”, [6]

It may easily be seen from the formula that K™ is always a real quantity. Furthermore,
the crientational dependence of K can always be described by any complete set of
functions which are fourth order in the components of b = (#,, /,, 45). This can be shown
by evaluation of F™ F* for an arbitrary direction of an internuclear vector and the
magnetic field. The functions ¢,g;, which form such a set, will be used here since they
form the basis for the second moment tensor, and since they make the symmetry con-
siderations particularly convenient. Thus, the aim is to find tensors 4S™ such that
formula [6] may be written

K(m) — ‘qA Sm q. [7]
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An algebraic evaluation of 4S™ as a function of (5,14 — Smotion) 1§ Straightforward
but discouragingly tedious. Instead, a computer program was written which calculated
K™ for 45 evenly distributed points on a hemisphere using 15 linearly independent
second moment tensors. The corresponding tensors 45™ were then evaluated from the
values of K™ by a least-squares procedure. As expected, A5 turned out to be equal to
(S:igia — Smotion)- The relations between AS©@ and ASV are given in Table 2a and those
between A4S and A4S in Table 2b. The relations between A4S and AS® can easily be
evaluated from those given in Table 2.

TABLE 2

THE RELATIONS BETWEEN THE RELAXATION TENSORS
S© AnND S™ (2a), AND S AND S? (2b)*

2a

Su® = (35, + 3525©)

S12W =3} (2d844” — 2dS55'7)

S = 3 (24545

S14D =4 (—3814? — d52.@ ~ dS35®)

Sis® =1 (=3815@ + dS,5s@ — dS3,®)

S22 = (45339 + 8. + S55)

523V = 3 (—4523'?)

526 =3 (—dS 1@ — $,,© + 3855)

st(l) = % (dsls(o) - st(o) - 3534(0))

5330 = § (452 + S0a® + 855)

534(1) = % (_dSIS(O) - 3st(o) - S34(°))

S350 =3 (—dS14® + 38534, — §35)

S =3 (3S11@ + dS1,? + 52,0 + S35 + 555
S45(1) = % (stlsm) - S45(°))

SssP =3 (351D — dS1,? + 8229 + S33@ + 54, ®)

S11P = 4 (=520 — S5 + 284, + 2855)
812 =4 (512 4 2dSs, " ~ 2dS55V)
S13'® =3 (S13™ + 2d5,s™)
S514@ =3 (251D — dS2, " ~ dS3s™")
S15@ =1 (228150 + dS,50 — dS34)
S0 = 50+ 350

2 = (355)
525@ = ‘1‘ (dS15'V — 383,)
8533 =1 (=851,V + 35,,V)
Su(o) = ‘} (—dsxsm - 3525(1))
535(0) =4 (—dS514™" + 35,

2@ =3 251,V +dS;,™M)

@ = 3 (S, )
S55(°’ =% (2511(1) ds;,™")

2b

8P =% (3522Y + 353;,?)

Su(z) o (_3512(0) 2ds“(0) + stss(o))
S13@ =} (=353 — 2dS,5)

$14? =3 (—dS;.© + dS35?)

“d=312,
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TABLE 2—Continued

S15® =1 (—dS:5'” + dS5:”)

822? =% (38119 — 8359 + 2844 + 2555'Y)
85230 =} (523)

Sz4(2) = % (dsu(o) - 2S24(°) - 3535(0))

sta’ = _& (_dsls(O) —_ 2525(0) —_ 3534(0))

833 =§ (351 — 855, + 254V + 2555)
S53.P = (dS15 + 3855 — 25:.)

S35(2) =% (dsu(o) - 3S24(0) - 2535(0))

844® = § (—dS12? + 285,V + 2535 + 2855V)
S45(2) =% ('_ZdSIS(o) - 2545(0))

Sss@ =3 (dS12P + 252,90 + 28357 + 28447

S11©@ =38P + 55,@ + 8§35, — 28,4 — 284552
Slz(o) = 2S12 - 2dS44(2) + 2dS55(2)
S$139 = 25,32 — 2dS,s?

514(0) = 5514(2) + dSz4(2) + ngs(Z)
S15@ =58,s@ — dS,s® + dS3,®
8§22@ = $11? + 355, — 355,
Sza(o) = 6523(2)

5249 = dS514® + 354® — 3535
525(0) = “dSl 5(2) + 3S25(2) + 3534(2)
Sss(O) = S“(Z) — 3S22(2) + 3533(2)
S34(°) = dsls(z) + 3S25(2) + 3534(2)
S35 = dS14® — 382, + 35352
Ses@ =-251,P — dS1,*? + 38,2
815©@ = —2dS;3® 4 38,5

Sss® = —251® + dS;,P + 3855@

The same results as those listed in Table 2 were also obtained in a similar but inde-
pendent analysis using a second moment tensor based on the complex second-order
spherical harmonics and their transformation matrix which is given in (/6).

Equations [3], [6], and [7} may be inserted in the formulas for the relaxation time in
the laboratory (4) and rotating (8, 11-13) frames:

Tyt = $y* R IU + DT D) + J PQuwo)],

Ty, ™t =3y* B I(1 + 1) [T ©Qw,) + 3T V(o) + 17 P(200)]
The result is
T T

T—1=;_K(1)____ 8 (2)_____,
! 3 1+w021:2+3K 1 4+ 4wy? ©* (8]
T, =K® ' __ysgw__° __iage__ T, [9]
. 1+4w,*1? 1 + wo?1? 1 + 4wy 12

where T = u~!. The derivations of formulas [8] and [9] are made for a pair of atoms only,
but it may be shown that they are valid also for systems containing many spins (see also
(20, 21)).

The relaxation times in the presence of several processes. In experimental studies of
relaxation one often comes across cases where more than one relaxation process is
present, and where one type of motion affects the others. Methods of coping with this
type of problem have been developed (15-17) and initially we shall follow the one
demonstrated by Punkkinen (17) (see also (22)) for the derivation of a procedure which
permits the use of the second moment tensor.

16
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Let us assume that there are two processes where the reorientation of one species
occurs at a rate u, among m, different configurations (the probability for one particuar
jump is then u,/m,), that the other reorients at a rate u, among m, different configur-
ations, and that the probability is the same for all configurations within a certain
reorientational species.

Assume, furthermore, that the processes are completely independent, i.e., a reorien-
tation of one species does not effect the reorientation probability of the other. (This is,
for instance, not the case for the threefold reorientations of an ammonium ion.) The
differential equations can now be written in the same way as in [2], using matrix
notation.

p(00)
p(10)
p(01)
p(11)
m—1 m,—1 m—1 m,—1
m, H m, U m, My m, 173 0
m,—1 m, — 1
L AT Ha 0 — Ha
m m my my
m;—1 m;—1
£ 0 S N : H
my, m, my m
0 B L
m, m m m,
p(00)
p(10)
X
p(01)
p(l1)

where p(00) is the probability that the system has the initial configuration, p(10) is the
probability for each of the configurations which are different from the original configur-
ation, but which can be reached from it by a single jump according to process 1, p(01)
is the corresponding probability for process 2, and p(11) is the probability for each
of the remaining configurations. Using the initial condition (at # = 0) that p(00) = 1 and
p(10) = p(01) = p(11) = 0, the solution becomes

p(00) 1 m~1 my—~1 (m—1(m,—-1)\ /e *!
p0)} 1 1 -1 my,—1 1—m, e~H!
pOD | mm {1 m—1 ~1 1—m, i

p(l 1) 1 —1 —1 1 e—(ll1+ll2)t
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It can be shown that similar result would, under the initial conditions, be obtained
for any number of processes. The general solution is given by

p(000...0)= m(l +(my — e 4 (m, — 1) (my — 1) e~ tateadt
A (my = 1) (my = 1) (my — e owrmmtast 4 ...
+(my— D(my — D(m3 —1)...(m, — )etatuztusttudt
plus other terms given by the symmetry of the problem).

To obtain the other functions p, one need only omit the values of m, in the expression
in parentheses which do not correspond to zeros in the argument for p.

The solution for p can be used in a more general derivation similar to the one leading
to Eq. [3]. The full derivation will not be given here, but results in expressions of the
type given in the next section.

RESULTS
Expressions for the relaxation times. Derivations in the above section resulted in the
following formulas for the relaxation times in the presence of one reorientational
process:

T T

T1—1= 3K(1)—_—1 +w0212+‘§‘K(2)1—+—4w;2—;§5 [10]
T -1 =K(O)__T___+.§_K(l)—r———— +%K(2)__T__ [11]
1o 1 +4w27? 1 + wo?? I+ dwg? 72
where
K™ = §ASmq. [12]

The functions g, depend on the direction of the external magnetic field relative to the
crystal and are given in [5] of the preceding article (19). 45‘? is equal t0 S,;;1q — Smotions
where $ is the second moment tensor which depends only on the crystal structure and
the motions present as described in (19). 45, AS™, and AS‘® are interrelated by simple
transformations given in Table 2.

The derivations of the corresponding expressions for more than one motional process
are briefly outlined in the above section and the results are the following.

For two processes:

0, K™(00) = §[S™(11)]q,
e K™(10) = §{S™(01) — S™(11)]q,
i, K™(01) = §[S™(10) — S™(11)]q, [13]

Ho+pa, K1) =G[$™(00) — S™(10) — S™X(01) + S™(11)]q,
where S™(11) refers to the second moment tensor whose elements are reduced by both
motions, and are transformed according to Table 2, S“(01) refers to the second
moment tensor whose elements are reduced by motion number 2. The corresponding
rates (u; = 1, 1) are given to the left of the equations. These equations may now be used
in the expressions for the relaxation time. For example,

2
T]_l :% E
m=1

2
x [K(M)(IO)M zm Hy

2 2
rraran tKTO) e K (s + o) ]
1 (\

22+ may? (1 + p2)* + m* wp?
[14]



432 ROLF SJIOBLOM

Dropping the index m, we obtain for three processes:

0, K(000) = §[S(111)]q,

s K{(100) = §[S(011) — S(111)]q,

Ha K{(010) = §[S(101) —~ S(111)]q,

B3, K(001) = §[S(110) — S(111)1q,

fy + iz K(110) = §[S(001) — S(011) — S(101) + S(111)]q, [15]
fy + s K(101) = §[S(010) —~ S(110) — S(O11) + S(111)]q,

fy + s K(011) = §[S(100) — S(110) — S(101) + S(111)]q,

fy+ iy + s K(111) = §[S(000) — S(100) — S(010) — S(001)

+ S(110) + S(101) + $(011) — S(111)]q.
For four processes:

0, K(0000) = §[S(1111)]q,
s, K(1000) = §[S(0111) — S(1111)] q,

py + K(1100) = §[S(0011) — S(1011) — S(0111) + S(1111)]q,
py + 1y s, K(1110) = §[S(0001) — S(1001) — S(0101) — S(0011)

+5(1101) + S(1011) + S©O111) — S(1111)]q, [16]
pi+ o+ s+ e, K(1111) = §[S(0000) — S(1000) — S(0100) — S(0010)

— $(0001) + S(1100) -+ S(1010) + $(1001)

+ S(0110) + S(0101) + S(0011) — S(1110)

— $(1101) — S(1011) — S(0111) + S(1111)] q.

The other relations are given by symmetry. Similar results would be obtained for any
number of processes.

The relaxation times for a powder. Although the T and T}, relaxation for a single
crystal is usually exponential (but see (20, 21)), this is not generally so for a powder.
The spin diffusion process is often not fast enough to give a spin temperature which is
common to all crystallites of different orientations. The experimentally observed
relaxation is, however, frequently exponential, and we shall make the approximation
that the inverse relaxation time for a powder is just the average of the inverse relaxation
times of the crystallites. This implies that the above formulas are valid also for poly-
crystalline samples if the powder average over K™ (=K™) is substituted for K.
Furthermore, K™ = §4S™q = Tr AS™ (cf. the preceding paper (19)) and Tr 4S® =
Tr SO = Tr AS® = AM, (cf. Table 2 and (19)). The relaxation times for one reorien-
tational process in a polycrystalline sample are thus:

_ _ T 4z
Tl_l = %[erigid - MZmotion][l + (002 T2 + 1 + 46002 szl ? [17]
T -1 — — T T T
1p =%[M2riuid - M2motion] %1 + 4(0121'2 + %1 + (1)021:2 + 1 + 4(0021_2 * [18]

These results are consistent with those obtained in (18).

Symmetry. It can readily be seen from Table 3 in the preceding paper (/9) and
Table 2 that A4S, 4SD, and 4S® in general have the same symmetry. Formulas
[10]-[16] indicate that this restriction also applies to Ty, T;,, and M,.
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Vibrational motion. It follows directly from the results in this section that, in order to
calculate the relaxation constants in the presence of librational motion, one need only
use the librationally averaged second moment tensors instead of the usual ones (cf. the
preceding article (19)).

Simplifications. Some simplifications of practical importance arise in cases where the
reorientation rates are sufficiently different in magnitude. For example, assume that
there are two processes, and that y; < u,. Then y; + p, ® u, and Eq. [14] reduces to

T, "t = gi K10 — T (ko1 + Kom(11))— T
v “ 12+ m? wg? 1t + m? wg?
This explains why expressions of this type can be used successfully in many experi-
mental studies of the relaxation time vs temperature (see, for example, (23-25)).

(Aw? T
)
2'1010 -
10 10 |
i
0 30 60 90

Xy
FiG. 1a. The second moment for a rigid and a reorienting methyl group as a function of the angle
betwzen the symmetry axis and the external magnetic field.

Ancther important explanation is, of course, that K(11) may be small. The com-
putational problem is reduced if some of the y; are equal; this is illustrated for the
trimethylammonium ion later in this section.

The second moment and relaxation constant as a function of orientation for a methyl
group. Let us assume that the threefold symmetry axis is parallel to the vector k, (cf.
the preceding article (19)) and that the jumps consist of rotations by 0, 120, and 240
degrees around this axis. The second moment tensor for the rigid case has the following
elements S;, = 2a/(5r%), S,, = S35 = 3a/(5r°) and the others are zero, with «, as in (19),
the constant in Van Vleck’s formula. The tensor for the case of the molecule in motion
has the elements S;; = 2a/(5r%) and the others are zero. The orientational dependence
of the second moment is of the form M, ;514 = ar~[0.5(1 — 3h,32)% + 2.25(1 — h;3%)?] and
M otion = 0.5 ar~8(1 — 3h;2)?, where ki, = cosy and  is the angle between the magnetic
field and the symmetry axis. These results are illustrated in Fig. 1a. The quantities
K™ may be obtained using Table 2 and formula [7]:

K© =225qr%(1 — hy?)?,
KO = 1.5ar~5(1 — hy*),
K® =0.375ar-5(1 + 652 + hs).
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The orientational dependence of K™ is illustrated in Fig. 1b. Formula [8] shows that
T, is proportional to KV + K™ for 1 € w272 and to K 4+ 4K for 1 > wy212.
The relaxation rates and constants for molecular motion of the trimethylammonium
ion. Expressions for the relaxation rates and constants for the molecular motion of the
cation in trimethylammonium hydrogen oxalate have recently been derived (22) ac-
cording to a method developed by Punkkinen (/7). These quantitities have been
reevaluated in this study in order to test the present method by a comparison of the
results from the two investigations. The assumptions used here will therefore be the
same as those for the R' = R” = 0 model in (22). Four reorientational processes take
place in this trimethylammonium ion: Each of the three methyl groups reorient (at
rates u, = u; = y,) together with reorientations of the cation as a whole (at a rate u,).

Kim —T T
(s
Ko
290" |- 3
K 4]
10" F i
K(Zl
1 1
o 30 60 90
X

FiG. 1b. The constants K™ which appear in expressions for the relaxation time (cf. text) for a re-
orienting methyl group as a function of the angle between the symmetry axis and the external magnetic
field.

The combined rates are then uy, g, + us,p1 + 21, e + 34z, H2, 24125 and 3y, as implied
from the section above. However, no internuclear vector is affected by the combined
motion of all three methyl groups. The relaxation constants for the rates 3y, and py + 3u,
thus vanish.

The expressions relating the constants X and the second moment tensors for four
processes (cf. [16]) then reduce to (dropping the index m as before):

K(uy) = §[SG3u2) — S(uy + 3u2)lq,
K(pz) = 3q[S(py + 205) — S(py + 3p2)149,
K(uy + 12) = 3§[S(2u2) — S(3p2) — S(uy + 2u2) + S(py + 3p5)]4,
K(2p,) = 3q[S(u; + pz) — 28(uy + 2u,) + S(u, + 31214,
K(uy + 2p5) = 3§[S(uz) — S(uy + p2) — 25(25) + 2S(puy + 2u5) + S(3pz) — S(uy + 315)14.

The argument for K is the corresponding rate, and the argument for S indicates the
motion over which the average should be taken. Thus, S(u, + 2u,) means the second
moment tensor averaged over the motion of the whole cation (i) and two of the methyl
groups (2u,). In addition, the rigid average (or outer in formula [1] in the preceding
article (719)) over the three orientations of the cation is assumed. The powder average
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TABLE 3

THE POWDER AVERAGES OF THE SECOND MOMENTS (IN G?) FOR A
TRIMETHYLAMMONIUM ION FOR DIFFERENT HYPOTHETICAL MOTIONS®

Contribution to M, from:

Type of reorientation Intramethyl
Rigid structure 20.336
One methyl group 15.256
Two methyl groups 10.176
Three methyl groups 5.096
Whole ion only 5.932
Ion + one methyl group 4.243
Ion + two methyl groups 2.553
Ion + three methyl groups 0.864

Lone proton

4.354
3.722
3.090
2.458
0373
0.252
0.130
0.009

3.658
2.813
2.218
1.873
0.708
0.541
0.446
0.422

Intermethyl

71t is assumed that the reorientations of the methyl groups and the ions as a
whole take place around the threefold pseudosymmetry axes.

TABLE 4

Tre CONTRIBUTIONS TO THE RELAXATION CONSTANTS ($K®) ForR A TRIMETHYLAMMONIUM ION®
CALCULATED FROM THE SECOND MOMENTS IN TABLE 3°

435

Rate of
relaxing
process® Intramethyl  Lone proton  Intermethyl
This study U 24.18 1.73 0.35
1+ i 48.53 7.31 4.60
m 20.19 11.69 6.92
2u, 1.02
Uy + 2[12 2.55
Sjoblom and Punkkinen (22)? 0 24.22 1.74 0.63
My + U2 48.45 7.28 4.30
m 19.99 11.68 6.86
2, 1.16
i+ 20, 2.39

“ In units of 10® sec=2.
b5 See text.

¢ The reorientation rates are g, and y, for the ion and a methyl group, respectively.
4 The relaxation constants from Sjoblom and Punkkinen (22) (which were calculated using the same

assumptions) are also shown for comparison.

of K 1s (as shown above) obtained by omitting q and using the traces of the second

moment tensors in the relations above.

The second moments for powder were calculated using the computer program
PSM (26, 27) and the results are given in Table 3. The corresponding relaxation con-
stants are listed in Table 4 together with those reported in (22) for comparison. The
agreement is good, and the small differences may well be explained by the errors intro-
duced by the averaging procedure used in (22).
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DISCUSSION

It has been shown above that relaxation constants and second moments are closely
related. To the author’s knowledge, this has only previously been reported for the case
of a powder (18). Furthermore, the rates for the combined reorientations may readily
he found if one assumes that the different processes are uncorrelated. This problem
has been treated in (22), where it was found that essentially the same results were
obtained using any reasonable assumption about the correlation, which suggests that
this approximation is probably a good one.

The calculations of parameters for relaxation times have in the present approach
been reduced to essentially calculations of second moments (cf. (19, Discussion,
Part I)). Other methods (cf. Introduction) require that coupled differential equations
be solved to give the rates, and that expressions be derived for the generally rather
cumbersome summations of complex functions.

It has sometimes been assumed that the relaxation time varies only slightly with
orientation. This is certainly true in many cases if one compares it with the temperature
dependence, which is often determined by an Arrhenius equation for the correlation
time: 7 =14 exp(E/kT). It is evident from Table 2 and formula [8], however, that the
relative changes in relaxation time as the orientation is altered may, on average, be of
approximately the same magnitude as that of the second moment. Second moments
and relaxation times also have the same symmetry, in general. Thus, studies of the
relaxation time as a function of orientation, although rarely performed, may be expected
to provide information similar to that of a corresponding second moment study.

A second moment tensor may be obtained experimentally from measurements of
second moments for each plateau in the second moment vs temperature curve. Inter-
mediate values may actually also be used as shown by Andrew and Lipofsky (28).
A common experimental procedure is to mount the crystal on a device such that any
vector in the plane of a crystal can be brought into coincidence with the external mag-
netic field. More than one such mounting may be required in each case since one
mounting allows the determination of at most five parameters.

Only differences between second moment tensors may be determined in an experi-
mental study of the relaxation time vs orientation. For simplicity, we shall only discuss
the relaxation time in the laboratory frame at constant temperature and for only one
dynamical process. Under these conditions, at most ten parameters (including the
correlation time) may be determined for one mounting if measurements are made at
two frequencies, where one frequency is larger and the other smaller than the inverse
of the correlation time. The number of different mountings required may thus be
reduced considerably. Another aspect is that relaxation times are easier to measure and
evaluate than second moments.
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