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An improved algorithm for the evaluation of intra- and inter-molecular contributions 
to the NMR second moment is presented. The final expressions are given in terms of 
quadratic forms of the second moment tensor which depends on the equilibrium crystal 
structure as well as on parameters describing average atomic and molecular motion, 
assuming the latter to be expressible by the rigid body motion formalism. These 
parameters are readily available once the crystal structure of the compound considered 
has been determined by X-ray or neutron diffraction methods, and may serve for the 
evaluation of second moments of single-crystal as well as polycrystalline specimens. The 
use of the second moment tensor formulation considerably reduces the computational 
effort which is required by such calculations when the Van Vleck formula is being 
directly evaluated. 

An explicit introduction of crystal symmetry into the second moment tensor formal- 
ism, presented in this paper, further enhances the efficiency and ease of application of 
the proposed method. 

INTRODUCTION 

The mean square half width of NMR absorption line from a dipolarly coupled 
solid, known as the NMR second moment and calculable from Van Vleck’s equation 
(I), depends on the equilibrium positions of the nuclear spin carriers as well as on 
their average motion (2). A general treatment of the effects of motion on this 
quantity, is obviously a rather difficult undertaking. However, in the important case 
of harmonically vibrating rigid groups of atoms (not necessarily chemical molecules) 
it was shown (3,4,5) that the effect of group vibrations on the NMR second moment 
can be estimated for single crystal and for crystalline powder specimens. This was 
done by averaging a Taylor expansion of the dipolar interaction term about the 
equilibrium positions of the nuclei, over nuclear displacements, and an expression of 
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the following general form has been obtained (5) 

((3 COS2 Oij- 1)/r:;)= (3 COS2 8jj - 1)/r; +fi(fI; rjj, (djj)) 

where fI is a unit vector along the external magnetic field, rij and rijare instantaneous 
and equilibrium internuclear vectors respectively, relating nuclei i and j, and 
djj = rij-rij is the difference of instantaneous displacements of nuclei i and i from 
their equilibrium positions. The averages (d) and (ddT> have been expressed in terms 
of atomic (6) and rigid-group (7) vibration tensors, which are readily available from 
structure determinations by X-ray and neutron diffraction. The above procedure 
enables one to evaluate the contributions, to the vibration-affected second moment, 
of nuclei i and j belonging to the same rigid group or to different groups, and thus the 
effect of vibrations on the intramolecular, intermolecular and intersegment contri- 
butions (cf. 5) can be accounted for. Another merit of the above method is that it 
employs experimentally available vibration parameters which have a sound lattice 
dynamical interpretation (8,9). However, the computation of the second moment, 
using [l] for a large number of magnetic field orientations, is not very economical 
since all the lattice summations involved must be evaluated anew for each orientation 
of I%. This problem is less disturbing in calculat?ons of the second moment for powder 
specimens (3,4) since all the orientations of the magnetic field are then averaged out. 

In a recent study of the second moment (10) and its applications (l&11 ), Van 
Vleck’s equation (1) was represented as a quadratic form of the second moment 
tensor (10) and thereby a separation of crystal-dependent and field-dependent 
quantities has been achieved. This was done by writing 

((3 COS2 @k-l)/r~~)=AT(Q)jjfI El 
where 

Q,, = 3ridT 1 
1, 7-77 

rij rij 

and by a subsequent reduction of the quadratic form in [2] to a scalar product. Thus, 
as shown in (10) 

141 

where 

and the functions I+(P) are the real spherical harmonics, listed in Table 1. The second 
moment is therefore given by 

M2a f I(((3 COST eb-l)/rC)2)~qTMq 
i=l j 

[51 
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TABLE 1 
THEREALSECOND-ORDERSPHERICAL 

HARMONICSASFUNCTIONSOF~=(~~,~~,P~)“ 

h= WW”%d +P: -~P:)IIPI*I 
dz = W=d”*Kp: -~;)llpi*l 
43 = (15/4~)“*(PlPzllPl*) 
44 = (15/4~)“*(PlP3/lP12) 
CfJs = ~15/4~~“*~P,P,llPl*~ 

0 The vector p represents the magnetic field or the 
interproton vector and its components pi, i = 1,2,3, are 
referred to a Cartesian system, constructed with the aid 
of basis vectors of the crystal and/or reciprocal lattices. 
For example, p = 8,p, + &p2 + 83~3, where 8i = s/lnl, 
ia = b*/lb*l and is = 2i x g2. If a crystal is transferred 
from an automatic diffractometer to the NMR spec- 
trometer, its orientation matrix (16) can be used to 
advantage. 

where 

M = F C (Hiifij) 
i=l j 

[61 

is the second moment tensor and N is the number of relevant nuclei in the unit cell. 
The inner brackets in [5] and the bar over a in [4] and [6] denote averaging over 
vibrations and fast reorientations while the outer brackets in [5] and [6] imply 
averaging over slow motions and orientations of crystallites in a powder sample. 

Apart from the advantageous separation, shown in [4] and [5], which permits one 
to evaluate only once all the lattice sums needed for M, thus considerably improving 
the efficiency of second moment calculation, this formulation has several advantages 
over Van Vleck’s formula: (a) the second moment of crystalline powder is simply 
Tr(M), (b) it is possible to introduce crystal symmetry into the second moment 
formula, and reduce further the computing effort and (c) the second moment tensor 
[6] can be used to evaluate relaxation constants. 

Regarding the influence of motion, an expression for the tensor M, taking into 
account the intramolecular contribution of rigid-body librations, has been derived 
(10) and was found to be equivalent to the corresponding Van Vleck-type expression 
(3). This libration-affected second moment formula (10) was further elaborated 
elsewhere (12). 

Another representation of the second moment, in terms of a fourth-order tensor, 
has been proposed (13) and the non-vanishing components of this tensor, for the 
various point groups, have been obtained by analogy with a treatment of the tensor of 
elastic constants (14). 

It was noted, during this study, that the second moment tensor can also be 
represented in a somewhat less elegant but equally efficient manner to that indicated 
by [4] and [6]. Since Q, as given by [3], is a symmetric second order tensor, we can 
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ii’(Q)fi= ; q,cF,c 
k=l 

c71 

where 

qT = (H:, H;, H:, 2HlH2,2HzH3,2HlH3) Bl 
F= = ((Qd, (022), (a,,>, (012>, (a,,>, (Q13)), [91 

Hi are Cartesian components of the unit vector fi and (Q,,,,) are independent 
components of the tensor (Q) (atomic indices are omitted here). We shall refer to [7] 
as the quadric representation. As will be shown below, it is possible, with [7], to 
introduce symmetry operators explicitly into the corresponding quadratic form of 
the new second moment tensor and hence, the simplifications due to any crystal 
symmetry can readily be incorporated into a computer program designed for second 
moment calculations. 

It is seen from [4] and [7] that, whether the irreducible spherical-harmonics 
representation or the quadric representation is being used, it is necessary to 
average all six independent components of the tensor r’rfT/rrS. The purpose of this 
article is to express these thermal averages in terms of crystallographic vibration 
parameters and to derive general expressions for the second moment tensors from 
which the intramolecular, intermolecular and intersegment contributions to the 
vibration-affected second moment can be conveniently evaluated. 

THERMAL AVERAGES 

The functions to be averaged over instantaneous displacements of the spin carriers 
are 

f&” =y and Q,, = 3fk,,, -4 
r 

where f,,,,, and Q,, are to be used in conjunction with equations [6] and [7] 
respectively. The procedure we shall employ consists of expanding either function in 
a Taylor series about the equilibrium internuclear separation vector and averaging 
the displacement moments which appear in the second and third terms of the 
expansion. These are the only correction terms considered since the harmonic 
approximation is being assumed. Thus, e.g. 

(f:.)=f~“+~(fmn)(d,)+~ &- (fmn)(dgdp) 
P 4 P 

Assuming that each of the nuclei is part of a rigid body, a condition which is 
approximately satisfied by many organic molecules, it was shown (5) that 

(dGB) = (UT) -(I$) 

= ${[LA -Tr(LA)l]p”- [LB -Tr(LB)l]p,? [Ill 
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where LA and LB are the libration tensors [7] of the rigid groups A and B to which the 
nuclei i and j respectively belong, and pf, p$ are equilibrium position vectors of 
these nuclei, referred to the centers of libration (7) of groups A and B. Furthermore, 
it was shown (5) that 

(ddT)i~=(UA(U~)T)+(U~(U~)T)-(Uf(U~)T)-(U~(Uf)T) 

su~+ufLuyJ-u;* WI 
The first two tensors on the r.h.s. of [12] are the anisotropic vibration tensors of 
nuclei i and j, which are experimentally available from X-ray structure analyses, 
while the other two describe the average correlated motion of these nuclei (cf. 
equation [3.3] of Ref. (15)). 

A detailed analysis of Eq. [12] in terms of the rigid body tensors 1 (translation), L 
(libration) and S (screw-motion) [7], and the corresponding coupling tensors 
describing correlated rigid body motion, has been presented elsewhere (5) and we 
shall quote here the resulting forms of (ddT), which are applicable to some important 
special cases, 

(1) Nuclei i and j belong to the same rigid group: 

(ddT)$=ViiLAVT 

where 
[I31 

Xk being Cartesian components of the equilibrium internuclear vector r$. 
(2) Nuclei i and j belong to different molecules: 

(dd=)+Uf+U; [I41 
In fact, the complete Eq. [12] should have been used in this case, and it will indeed 

be so employed as soon as the coupling tensors U y are experimentally available or 
reliably calculable. One might argue, however, that upon an accumulation of 
numerous intermolecular internuclear contributions a large number of cancellations 
will occur and coupling may be negligible. This may be true, but remains to be further 
examined. 

(3) Nuclei i and j belong to different rigid segments of the same non-rigid 
molecule: 

where 

(ddT)tB = WtLA(Wf)= + W:LB(WB)T [I51 

0 P3 -P2 

w=-P3 0 Pl, 

i I P2 -p1 0 

pf has the same meaning as in [ll] and LA, LB are libration tensors of the two 
segments considered. The assumptions underlying [ 151 are (a) the two segments A 
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and B have equal translation tensors and (b) the librational motions of A and B are 
not correlated. 

It should be pointed out that the intermolecular vibrational correction to the 
second moment is usually smaller than the intramolecular one (4) and the neglect of 
correlated motion in cases 2 and 3 above does not appear to be a very drastic 
approximation. 

The required averages, to be used with the two above described tensorial 
representations of the second moment, are evaluated by carrying out the differen- 
tiations indicated in [lo] and using the expressions for(d) and (ddT), presented in this 
section, for the cases considered. 

The corresponding expressions are given by 

(fLn)=ARnn+ f, B&ULn)+Gn 
p=l P 

where 

Rnn = .CJn 

A = [f-sr7(d)+$r’(ddT)r-$Tr((dd’))] 

4 =f (d,)-; i hWq)& 
q=l 

Cm, = f &dn) 

and 

(Q,.)=Xf:,)-($) [I71 

where 

=f-$r’(d)+$,r’(dd’)r-$Tr((ddT)) 

The expressions [ 161 and [ 171 are completely general, within the framework of the 
harmonic approximation. Since, however, the intramolecular contribution to the 
second moment is likely to be of greatest interest, it is worthwhile to present explicit 
expressions for this particular case. This can be done either by substituting [ 111, with 
A = B, and [13] into each of [16] and [17], or by the methods of Refs. (3) and 10). 
The result, in which the summation convention has been implied, is 

~fi.~=f~~,.+~,p~~p.-~~~~~~p.I+~.,~L,,-~~~~~S,~l+~~~p~~,. [W 

and 

(Qm> = %fkn)-$ D91 
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where L,, is a component of the libration tensor of the group considered and u,, has 
the same meaning as in Eq. [13]. 

As mentioned in the introduction, a result equivalent to [18] has been derived in 
[lo] and was further developed in [ 121 in connection with applications to quadrupole 
and dipole interactions in solids. 

We shall now discuss the introduction of crystal symmetry into the second moment 
in its quadratic representation and then proceed to a summary of the method. 

THE SECOND MOMENT AND CRYSTAL SYMMETRY 

We shall start with the quadric representation outlined in the introduction and 
rewrite Eqs. [7], [8] and [9]: 

ii=(Q)H= f vkFk [71 
k=l 

q= = (H:, &, Hz, 2HlH292H2H392H1H3) PI 
F= = ((Qd, (Q22>> (Q33), (QI,>, (Q23h (Q13)) [91 

where the components of F are given by [17] and [19] for the general and 
intramolecular cases respectively. 

If nucleus i belongs to the pth asymmetric unit and nucleus j is anywhere in the 
crystal, then to the vector r, = ri - ri there corresponds a symmetry related one, 
r(‘) = PC% where PCS’ is the rotational part of the space group operation transforming 
tte pth in:0 the qth asymmetric unit. Hence, the tensor (Q) transforms as 

(Q)(S) = pw(Q)pw DOI 
or, in component form, 

(Q,,dS) = Pi$F'?;<Q,,. WI 

Since (Q) is a symmetric tensor, we have 

a(Qm )(') = P;; P$, p = q 

atO,> 
P$bpG + P’gPg!, p + q 

WI 

where mn and pq refer to the upper triangles of (Q)(‘) and (Q) respectively. 
Comparing [9], [21] and [22], we can obtain a suitable representation of the 
symmetry operation as a 6 x 6 matrix II”‘, where 

F(S) = n’“‘F or F(kS) = nlsl’j+’ [231 

The indices k and 1 in [23] correspond to the three dimensional representation 
according to 

k 1 2 3 4 5 6 

mn 11 22 33 12 23 31 
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If the unit cell contains k asymmetric units, the second moment is proportional to 

[241 

We may now compute the separate contributions of the k asymmetric units for a 
single direction of the magnetic field or use the contribution of a single unit and k 
symmetry-related directions of the field vector. The latter approach will reduce the 
computing time by a factor of (nearly) k and is of course preferable. The second 
moment thus reduces to 

where 
N/k all 

q(‘) = l$s)Tq and u = C C FijFc 
i=l j=l 

I251 

P61 

We have achieved a reduction of the second moment to a sum of quadratic forms 
which explicitly take into account the crystal symmetry. The appropriately trans- 
formed symmetry operations are here applied to the magnetic field dependent vector 
9 rather than to the structure which, along with its lattice vibrations and possible 
reorientations, has to be considered only once. 

One of the merits of the quadric representation is that it can directly utilize 
crystallographic results in their conventional form, as the II”’ matrices are readily 
constructed from the 3 x 3 PC” symmetry operations with the aid of [22]. 

DISCUSSION 

As shown in the foregoing sections, the second moment can now be efficiently 
evaluated, while taking into account atomic and molecular motion, via the U, T, L 
and S tensors which are available or derivable from conventional crystal structure 
analyses. 

In order to enhance the ease of application of the expressions derived above, to 
various types of problems, two quadratic-form representations of the second 
moment have been proposed. The spherical-harmonics representation, introduced 
in (10) and further developed in this paper, is, because of its irreducibility, the 
appropriate one to use in attempts at determining structural parameters of hydrogen 
nuclei from second moment measurements. The general vibration correction to the 
second moment is evaluated from Eqs. [ 111, [ 121 (or the variants [ 131, [ 141 and [ 151) 
and [16] which permit, with the aid of Table 1, performing the summation leading to 
the second moment tensor [6] and the second moment MT, as given by the r.h.s. of 
PI. 
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The other representation, put forward in this paper and termed ‘the quadric 
representation”, lead to a (reducible) 6 X 6 second moment tensor and enables one to 
introduce explicitly the crystal symmetry into the computation of the second 
moment. It should be noted that no group theoretical arguments are required for 
the transformation of Van Vleck’s equation to the quadratic form of the second 
moment tensor (cf. [24]) and the required enlarged (6 X6) symmetry operation 
matrices can be constructed in a simple manner using [22] with conventional (3 x 3) 
matrices of the crystal point group considered. If the construction of a Cartesian 
system, and transformations of vectors and tensors (including symmetry operations) 
thereto are allowed for, the quadric representation permits an evaluation of the 
vibrationally corrected second moment, using as input a conventional description of 
a crystal structure. The second moment calculation proceeds, in the general case, 
through equations [l 11, [ 121, [ 161 and [ 171 from which M2 can be evaluated with the 
aid of [25] using the second moment tensor given by [26]. 

It should be pointed out that the two representations of the second moment are 
completely equivalent and nearly equally efficient. The differences in programming 
and computing effort are probably marginal and the choice depends mainly on the 
type of representation the user is accustomed to. For example, it is believed that 
crystallographers will prefer the quadric representation, which appears in many 
phases of crystal structure analysis, while spectroscopists will favor the irreducible 
spherical-harmonics representation. Since the subject discussed here is an inter- 
disciplinary one, it may only benefit from easily accessible approaches. 

The second moment tensor, in either representation, can thus be readily used in 
evaluating efficiently the second moment for an arbitrary orientation of a single 
crystal relative to the external magnetic field (cf. Eqs. [5] and [25]). The second 
moment calculation for powder specimens is also quite straightforward. For the 
spherical-harmonics representation it is given simply by the trace of the correspond- 
ing second moment tensor, as shown in (10). For the quadric representation, we have 

where k is the number of asymmetric units in the unit cell, (T, are components of the 
second moment tensor (T appearing in [26] and the numerical coefficients in [27] are 
related to the non-vanishing integrals of the form jsph ninidr, which appear in the 
orientational averaging of equation [25]. 

The second moment tensor formalism is also applicable to the study of relaxation 
constants (I I ). 

As is evident from the foregoing, the main computational effort is spent on the 
evaluation of the effects of motion on the intermolecular contribution to the second 
moment. These effects were, until recently (4), neglected altogether without proper 
justification. The few available examples (4,s) indicate that, in fact, the intramole- 
cular contribution predominates in cases of large libration. This is also consistent 
with the qualitative arguments presented in (10). However, this cannot be regarded 
as a rule, if only in view of an opposite behavior in pyrene and anthracene (4). 
Generally speaking, the relative importance of intra- and intermolecular contribu- 
tions depends on the packing arrangement and dynamics of the crystal considered. 
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Since these properties are specific to any given crystal, it is difficult to make a priori 
predictions which will permit a decision as to when the neglect of the intermolecular 
vibrational correction is really justified. It is the opinion of the present authors that 
this has to be carefully considered in each particular case, depending on the 
compound studied, and if the purpose of the study in question calls for more than 
approximate results, that both contributions should be evaluated. It is hoped that the 
present paper will prove to be useful for this purpose. 
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