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An improved algorithm for the evaluation of intra- and inter-molecular contributions
to the NMR second moment is presented. The final expressions are given in terms of
quadratic forms of the second moment tensor which depends on the equilibrium crystal
structure as well as on parameters describing average atomic and molecular motion,
assuming the latter to be expressible by the rigid body motion formalism. These
parameters are readily available once the crystal structure of the compound considered
has been determined by X-ray or neutron diffraction methods, and may serve for the
evaluation of second moments of single-crystal as well as polycrystalline specimens. The
use of the second moment tensor formulation considerably reduces the computational
effort which is required by such calculations when the Van Vleck formula is being
directly evaluated.

An explicit introduction of crystal symmetry into the second moment tensor formal-
ism, presented in this paper, further enhances the efficiency and ease of application of
the proposed method.

INTRODUCTION

The mean square half width of NMR absorption line from a dipolarly coupled
solid, known as the NMR second moment and calculable from Van Vleck’s equation
(1), depends on the equilibrium positions of the nuclear spin carriers as well as on
their average motion (2). A general treatment of the effects of motion on this
quantity, is obviously a rather difficult undertaking. However, in the important case
of harmonically vibrating rigid groups of atoms (not necessarily chemical molecules)
it was shown (3, 4, 5) that the effect of group vibrations on the NMR second moment
can be estimated for single crystal and for crystalline powder specimens. This was
done by averaging a Taylor expansion of the dipolar interaction term about the
equilibrium positions of the nuclei, over nuclear displacements, and an expression of
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the following general form has been obtained (5)

(3 cos® 8;—1)/ri} )= (3 cos® 8; — 1)/ ry; + f1(H; ry5, (d;;))
+f2(H; 1y, (dd)) [1]

where H is a unit vector along the external magnetic field, r;and r ;are instantaneous
and equilibrium internuclear vectors respectively, relating nuclei i and j, and
d;; =rj—r; is the difference of instantaneous displacements of nuclei i and j from
their equilibrium positions. The averages (d) and (dd”) have been expressed in terms
of atomic (6) and rigid-group (7) vibration tensors, which are readily available from
structure determinations by X-ray and neutron diffraction. The above procedure
enables one to evaluate the contributions, to the vibration-affected second moment,
of nuclei / and j belonging to the same rigid group or to different groups, and thus the
effect of vibrations on the intramolecular, intermolecular and intersegment contri-
butions (cf. 5) can be accounted for. Another merit of the above method is that it
employs experimentally available vibration parameters which have a sound lattice
dynamical interpretation (8, ). However, the computation of the second moment,
using [1] for a large number of magnetic field orientations, is not very economical
smce all the lattice summations involved must be evaluated anew for each orientation
of H. This problem is less disturbing in calculations of the second moment for powder
specimens (3, 4) since all the orientations of the magnetic field are then averaged out.

In a recent study of the second moment (10) and its applications (10, 11), Van
Vleck’s equation (1) was represented as a quadratic form of the second moment
tensor (10) and thereby a separation of crystal-dependent and field-dependent
quantities has been achieved. This was done by writing

<(3 COS 011 - 1)/’ ) HT<Q>U [2]
where
3rjet |
Qij = :l -3 [3]
i rij

and by a subsequent reduction of the quadratic form in [2] to a scalar product. Thus,
as shown in (10)

A (QH= kél qrdr [4]

where

r X 4112
g = 27" 2 (H), ax =—5?‘¢k(l")

and the functions ¢{ p) are the real spherical harmonics, listed in Table 1. The second
moment is therefore given by

M,x Z Y3 cos® 8 -1)/riYy=q'M [5]

i=1j
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TABLE 1

THE REAL SECOND-ORDER SPHERICAL
HARMONICS AS FUNCTIONS OF p=(p,, p3, p3) ¢

é1=(5/16m)"*[(p} +p3 —2p3)/Ip]
é>=(15/16m)"[(p? —p3)/Ipl"]
é3=(15/4m)"*(p1p2/Ipl")
é4=(15/4m)"*(p1ps/IpP)
és=(15/47)"*(paps/Ipl")

“ The vector p represents the magnetic field or the
interproton vector and its components p;, i = 1, 2, 3, are
referred to a cartesian system, constructed with the aid
of basis vectors of the crystal and/or reciprocal lattices.
For example, p=@&;p;+&,p,+8&3p;, where &, =a/|al,
&, =b*/|b*| and &, =8, x&,. If a crystal is transferred
from an automatic diffractometer to the NMR spec-
trometer, its orientation matrix (16) can be used to
advantage.

where

1z

(a,a;) (6]

1

is the second moment tensor and N is the number of relevant nuclei in the unit cell.
The inner brackets in [5] and the bar over a in [4] and [6] denote averaging over
vibrations and fast reorientations while the outer brackets in [5] and [6] imply
averaging over slow motions and orientations of crystallites in a powder sample.

Apart from the advantageous separation, shown in [4] and [5], which permits one
to evaluate only once all the lattice sums needed for M, thus considerably improving
the efficiency of second moment calculation, this formulation has several advantages
over Van Vleck’s formula: (a) the second moment of crystalline powder is simply
Tr(M), (b) it is possible to introduce crystal symmetry into the second moment
formula, and reduce further the computing effort and (c) the second moment tensor
[6] can be used to evaluate relaxation constants.

Regarding the influence of motion, an expression for the tensor M, taking into
account the intramolecular contribution of rigid-body librations, has been derived
(10) and was found to be equivalent to the corresponding Van Vieck-type expression
(3). This libration-affected second moment formula (10) was further elaborated
elsewhere (12).

Another representation of the second moment, in terms of a fourth-order tensor,
has been proposed (13) and the non-vanishing components of this tensor, for the
various point groups, have been obtained by analogy with a treatment of the tensor of
elastic constants (14).

It was noted, during this study, that the second moment tensor can also be
represented in a somewhat less elegant but equally efficient manner to that indicated
by [4] and [6]. Since Q, as given by [3], is a symmetric second order tensor, we can
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write
6
HT<Q)H = 121 nka [7]
where
n" =(H3, H3, H3,2H,H,, 2H,H;, 2H, H>) (8]
F™ =((Q11), (Q22), (Q33), {Q12), (Q23), {Q13)), [9]

H; are cartesian components of the unit vector H and (Q,..) are independent
components of the tensor (Q) (atomic indices are omitted here). We shall refer to [7]
as the quadric representation. As will be shown below, it is possible, with [7], to
introduce symmetry operators explicitly into the corresponding quadratic form of
the new second moment tensor and hence, the simplifications due to any crystal
symmetry can readily be incorporated into a computer program designed for second
moment calculations.

It is seen from [4] and [7] that, whether the irreducible spherical-harmonics
representation or the quadric representation is being used, it is necessary to
average all six independent components of the tensor r'r /r"°. The purpose of this
article is to express these thermal averages in terms of crystallographic vibration
parameters and to derive general expressions for the second moment tensors from
which the intramolecular, intermolecular and intersegment contributions to the
vibration-affected second moment can be conveniently evaluated.

THERMAL AVERAGES

The functions to be averaged over instantaneous displacements of the spin carriers
are

XX 1
f:nn=_7§_ and Omn=3fmn-F

where f.. and Q,,, are to be used in conjunction with equations [6] and [7]
respectively. The procedure we shall employ consists of expanding either function in
a Taylor series about the equilibrium internuclear separation vector and averaging
the displacement moments which appear in the second and third terms of the
expansion. These are the only correction terms considered since the harmonic
approximation is being assumed. Thus, e.g.

1 9

2 0X,0X,

Coyop 49
(fmn>_fmn+aXp (fmn)(dp)+ (fmn)(dqdp> [10]

Assuming that each of the nuclei is part of a rigid body, a condition which is
approximately satisfied by many organic molecules, it was shown (5) that
@i®) = —@p)

= HLA - Tr(Lp? - [L® — Tr(L)Jp;} [11]
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where L and L? are the libration tensors [7] of the rigid groups A and B to which the
nuclei i and j respectively belong, and p;*, p; are equilibrium position vectors of
these nuclei, referred to the centers of libration (7) of groups A and B. Furthermore,
it was shown (5) that

(da"y; = @@+ @) -@lte?)) - e
=Ur+U7-uit-uit [12]

The first two tensors on the r.h.s. of [12] are the anisotropic vibration tensors of
nuclei i and j, which are experimentally available from X-ray structure analyses,
while the other two describe the average correlated motion of these nuclei (cf.
equation [3.3] of Ref. (15)).

A detailed analysis of Eq. [12] in terms of the rigid body tensors T (translation), L
(libration) and § (screw-motion) [7], and the corresponding coupling tensors
describing correlated rigid body motion, has been presented elsewhere (5) and we
shall quote here the resulting forms of (dd” ), which are applicable to some important
special cases,

(1) Nuclei i and j belong to the same rigid group:

dd"yg =v,LAv] [13]
where
0 X:s -X;
V,'l' = _X3 0 Xl
X, -X; 0

X, being cartesian components of the equilibrium internuclear vector rf,‘.
(2) Nuclei i and j belong to different molecules:

(") =U’+U7 [14]

In fact, the complete Eq. [12] should have been used in this case, and it will indeed
be so employed as soon as the coupling tensors U{® are experimentally available or
reliably calculable. One might argue, however, that upon an accumulation of
numerous intermolecular internuclear contributions a large number of cancellations
will occur and coupling may be negligible. This may be true, but remains to be further
examined.

(3) Nuclei i and j belong to different rigid segments of the same non-rigid
molecule:

(ddT>,-’,-‘B=Wf‘LA(W;4)T+W?LB(W?)T [15]
where
0 Py —P2
W= |—p; 0 P1 |
p2 —p1 O

p has the same meaning as in [11] and L* L® are libration tensors of the two
segments considered. The assumptions underlying [15] are (a) the two segments A
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and B have equal translation tensors and (b) the librational motions of A and B are
not correlated.

It should be pointed out that the intermolecular vibrational correction to the
second moment is usually smaller than the intramolecular one (4) and the neglect of
correlated motion in cases 2 and 3 above does not appear to be a very drastic
approximation.

The required averages, to be used with the two above described tensorial
representations of the second moment, are evaluated by carrying out the differen-
tiations indicated in [10] and using the expressions for (d) and (dd "), presented in this
section, for the cases considered.

The corresponding expressions are given by

(Frun) = ARy + z B, ;< )+ G [16]
where
Romn = XX
A=[- 0@+ 25 (@a e~ 25 Tr(aa") |
ror 2r
1 5 3
sz—s(dp>_—7 z (dpdq)Xq
r r g=1
1
=r—5<d d,)
and
1
(Qu) =3 run)~(3) [17)
where

(55) = 5= 7@+ (@ e~ 5 Tr((da™)

The expressions [16] and [17] are completely general, within the framework of the
harmonic approximation. Since, however, the intramolecular contribution to the
second moment is likely to be of greatest interest, it is worthwhile to present explicit
expressions for this particular case. This can be done either by substituting [11], with
A =B, and [13] into each of [16] and [17], or by the methods of Refs. (3) and 10).
The result, in which the summation convention has been implied, is

1
< finn) = r_S {Rmn + Rmp [Lpn - TT(L)SP,,] + an [Lqm - Tr(L)aqm] + vmprqvqn [18]

and

(=3 f )~ [19]
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where L, is a component of the libration tensor of the group considered and v,,,, has
the same meaning as in Eq. [13].

As mentioned in the introduction, a result equivalent to [18] has been derived in
[10] and was further developed in [12]in connection with applications to quadrupole
and dipole interactions in solids.

We shall now discuss the introduction of crystal symmetry into the second moment
in its quadratic representation and then proceed to a summary of the method.

THE SECOND MOMENT AND CRYSTAL SYMMETRY

We shall start with the quadric representation outlined in the introduction and
rewrite Egs. [7], (8] and [9]:

R 6

H(QH= kz=:1 MeFi 7]

T'=(H}, H3, H3, 2H:H,, 2H,H3, 2H, H3) (8]
FT = ((Qu), (sz% <O33), (012>, (Qz3), (Qn» [9]

where the components of F are given by [17] and [19] for the general and
intramolecular cases respectively.
If nucleus i belongs to the pth asymmetric unit and nucleus j is anywhere in the
crystal, then to the vector r, =r;—r; there corresponds a symmetry related one,
(‘) P(S)r,, where P® is the rotational part of the space group operation transforming
the pth into the gqth asymmetric unit. Hence, the tensor (Q) transforms as

(Q)(s) - P(s)<Q>P(s)T [20]

or, in component form,
(Qumn)¥ = PP (Qpo). [21]

Since (Q) is a symmetric tensor, we have

HQuma)® _(ProPnys P=q

HOpa) (22]

PP +PoiPly, ptq
where mn and pq refer to the upper triangles of (@) and (Q) respectively.

Comparing [9], [21] and [22], we can obtain a suitable representation of the
symmetry operation as a 6 X 6 matrix IT*), where

FO=N“F or F =IJF" [23]

The indices k and [ in [23] correspond to the three dimensional representation
according to
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If the unit cell contains k asymmetric units, the second moment is proportional to

,  k Nkan .
M;=3 (X Y ETQPR?)

s=1 ‘i=1j=1

k
=Y LY FPF ™

s=1 i#j

k

= § "3 T FF]) T, [24]
s=1 i#j

We may now compute the separate contributions of the k asymmetric units for a

single direction of the magnetic field or use the contribution of a single unit and &

symmetry-related directions of the field vector. The latter approach will reduce the

computing time by a factor of (nearly) k and is of course preferable. The second

moment thus reduces to
k

Mo Z n(s)To,,n(s) [25]
s=1
where
© ()T N/k all T
‘qs =11 mn and o= Z z FijFij [26]

i=1j=1

We have achieved a reduction of the second moment to a sum of quadratic forms
which explicitly take into account the crystal symmetry. The appropriately trans-
formed symmetry operations are here applied to the magnetic field dependent vector
n rather than to the structure which, along with its lattice vibrations and possible
reorientations, has to be considered only once.

One of the merits of the quadric representation is that it can directly utilize
crystallographic results in their conventional form, as the I matrices are readily
constructed from the 3 x 3 P’ symmetry operations with the aid of [22].

DISCUSSION

As shown in the foregoing sections, the second moment can now be efficiently
evaluated, while taking into account atomic and molecular motion, via the U, T, L
and S tensors which are available or derivable from conventional crystal structure
analyses.

In order to enhance the ease of application of the expressions derived above, to
various types of problems, two quadratic-form representations of the second
moment have been proposed. The spherical-harmonics representation, introduced
in (10) and further developed in this paper, is, because of its irreducibility, the
appropriate one to use in attempts at determining structural parameters of hydrogen
nuclei from second moment measurements. The general vibration correction to the
second moment is evaluated from Eqs. [11], [12] (or the variants [13], [14] and [15])
and [16] which permit, with the aid of Table 1, performing the summation leading to
the second moment tensor [6] and the second moment M,, as given by the r.h.s. of

[5]
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The other representation, put forward in this paper and termed ‘the quadric
representation”, lead to a (reducible) 6 X 6 second moment tensor and enables one to
introduce explicitly the crystal symmetry into the computation of the second
moment. It should be noted that no group theoretical arguments are required for
the transformation of Van Vleck’s equation to the quadratic form of the second
moment tensor (cf. [24]) and the required enlarged (6 X6) symmetry operation
matrices can be constructed in a simple manner using [22] with conventional (3 x 3)
matrices of the crystal point group considered. If the construction of a cartesian
system, and transformations of vectors and tensors (including symmetry operations)
thereto are allowed for, the quadric representation permits an evaluation of the
vibrationally corrected second moment, using as input a conventional description of
a crystal structure. The second moment calculation proceeds, in the general case,
through equations [11], [12], [16] and [17] from which M, can be evaluated with the
aid of [25] using the second moment tensor given by [26].

It should be pointed out that the two representations of the second moment are
completely equivalent and nearly equally efficient. The differences in programming
and computing effort are probably marginal and the choice depends mainly on the
type of representation the user is accustomed to. For example, it is believed that
crystallographers will prefer the quadric representation, which appears in many
phases of crystal structure analysis, while spectroscopists will favor the irreducible
spherical-harmonics representation. Since the subject discussed here is an inter-
disciplinary one, it may only benefit from easily accessible approaches.

The second moment tensor, in either representation, can thus be readily used in
evaluating efficiently the second moment for an arbitrary orientation of a single
crystal relative to the external magnetic field (cf. Egs. [5] and [25]). The second
moment calculation for powder specimens is also quite straightforward. For the
spherical-harmonics representation it is given simply by the trace of the correspond-
ing second moment tensor, as shown in (10). For the quadric representation, we have

k
Mz(POWdeT)OCE [B(o11t ot o33)t4(0aatosstoge) T 2(012+ o023+ o13)]  [27]

where k is the number of asymmetric units in the unit cell, o; are components of the
second moment tensor o appearing in [26] and the numerical coefficients in [27] are
related to the non-vanishing integrals of the form ., n:m; dr, which appear in the
orientational averaging of equation [25].

The second moment tensor formalism is also applicable to the study of relaxation
constants (11).

As is evident from the foregoing, the main computational effort is spent on the
evaluation of the effects of motion on the intermolecular contribution to the second
moment. These effects were, until recently (4), neglected altogether without proper
justification. The few available examples (4, 5) indicate that, in fact, the intramole-
cular contribution predominates in cases of large libration. This is also consistent
with the qualitative arguments presented in (10). However, this cannot be regarded
as a rule, if only in view of an opposite behavior in pyrene and anthracene (4).
Generally speaking, the relative importance of intra- and intermolecular contribu-
tions depends on the packing arrangement and dynamics of the crystal considered.
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Since these properties are specific to any given crystal, it is difficult to make a priori
predictions which will permit a decision as to when the neglect of the intermolecular
vibrational correction is really justified. It is the opinion of the present authors that
this has to be carefully considered in each particular case, depending on the
compound studied, and if the purpose of the study in question calls for more than
approximate results, that both contributions should be evaluated. It is hoped that the
present paper will prove to be useful for this purpose.
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